In order to get maximum benefit and good training it is necessary for the students to follow the following instructions.

1. The students must attend all practical classes. Each experiment in practicals has got important relevance to theory subjects.
2. Bring this practical manual to your practicals class.
3. Bring the following objects to the practicals class – Pencils (HB), Pen, Eraser, a scale and a small hand towel.
4. Record the title, date and findings of the experiment in the observation note book.
5. Carefully listen to the instructions given by your Teacher.
6. While observation slides or models draw the structure of the specimen as you see it neatly in your observation note book. Use pencil for drawing.
7. While doing experiments neither consult your neighbours nor look into their readings or observations.
8. If the object under the microscope remains without proper focusing immediately bring it to the notice of the Teacher.
9. Do not touch or lift the models or equipments kept for your identification.
10. Diagrams to be drawn for Prepared slides only in the record note. Relevant photographs can be collected and pasted for the other sections.
CONTENTS

<table>
<thead>
<tr>
<th>S. No</th>
<th>EXPERIMENTS</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fermentation by yeast</td>
<td>234</td>
</tr>
<tr>
<td>2</td>
<td>Determination of colour and pH in the given water samples</td>
<td>235</td>
</tr>
<tr>
<td>3</td>
<td>Marking of Wildlife Sanctuary and National parks in India map</td>
<td>236</td>
</tr>
<tr>
<td>4</td>
<td>Human Mendelian traits</td>
<td>238</td>
</tr>
<tr>
<td>5</td>
<td>ABO blood grouping - Demonstration Experiment</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>A - PREPARED SLIDES</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Human Sperm</td>
<td>241</td>
</tr>
<tr>
<td>7</td>
<td>Human ovum</td>
<td>241</td>
</tr>
<tr>
<td>8</td>
<td>Paramecium – conjugation</td>
<td>242</td>
</tr>
<tr>
<td>9</td>
<td>Entamoeba histolytica</td>
<td>242</td>
</tr>
<tr>
<td>10</td>
<td>Thymus – T.S</td>
<td>243</td>
</tr>
<tr>
<td>11</td>
<td>Lymph node – T.S</td>
<td>243</td>
</tr>
<tr>
<td></td>
<td>B - PICTURES</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>tRNA</td>
<td>244</td>
</tr>
<tr>
<td>13</td>
<td>Homologous organs</td>
<td>244</td>
</tr>
<tr>
<td>14</td>
<td>Analogous organs</td>
<td>245</td>
</tr>
<tr>
<td>15</td>
<td>Animal cloning - Dolly (Sheep)</td>
<td>245</td>
</tr>
<tr>
<td>16</td>
<td>Human insulin production - Flowchart</td>
<td>246</td>
</tr>
<tr>
<td></td>
<td>C - GENETICS</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Normal Human karyotype</td>
<td>246</td>
</tr>
<tr>
<td>18</td>
<td>Autosomal Anomaly – Patau's Syndrome</td>
<td>247</td>
</tr>
<tr>
<td>19</td>
<td>Sex Chromosomal Anomaly – Turner's Syndrome</td>
<td>247</td>
</tr>
<tr>
<td>20</td>
<td>X – Linked Disease – Haemophilia</td>
<td>248</td>
</tr>
<tr>
<td>21</td>
<td>Autosomal Disease – Sickle cell anemia</td>
<td>249</td>
</tr>
<tr>
<td></td>
<td>PROJECT WORK</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Determine the universality of variations by studying thumb impressions in a given population</td>
<td>250</td>
</tr>
<tr>
<td>2</td>
<td>Study the effect of a local industry on the environment</td>
<td>250</td>
</tr>
<tr>
<td>3</td>
<td>Study the ecological role of some insects and birds in a given locality</td>
<td>250</td>
</tr>
<tr>
<td>4</td>
<td>Visit to a zoological park/wildlife sanctuary in your locality</td>
<td>250</td>
</tr>
<tr>
<td>5</td>
<td>Visit to a nearby aquatic habitat</td>
<td>250</td>
</tr>
</tbody>
</table>
EXPERIMENTS

1. FERMENTATION BY YEAST

AIM
To find the variation in the process of fermentation by yeast in the given samples I, II and III.

MATERIALS REQUIRED
- Glucose solution
- Test tubes
- Palm sugar / Jaggery solution
- Delivery tube
- Jaggery with salt / starch solution
- One holed rubber cork
- Yeast solution
- Lime water

PRINCIPLE
Fermentation is an anaerobic metabolic process accompanied with effervescence. During this process, sugar is converted into ethyl alcohol and CO₂. Yeast has an enzyme zymase which catalyses the fermentation process.

\[
\text{Glucose} \xrightarrow{\text{Yeast}} \text{Ethyl alcohol} + \text{CO}_2
\]

PROCEDURE
- Take 2ml of the given samples I, II and III in three clean test tubes (labelled as 1, 2 and 3) respectively.
- Add 2ml of yeast solution in all the test tubes and plug the tubes with cotton wool.
- Wait while fermentation takes place and note the time taken.
- Appearance of effervescence in the test tube indicates that fermentation has taken place.
- Remove the cotton wool and pass the gas through a delivery tube into a test tube containing lime water.
- The lime water turns milky indicating that the gas evolved during fermentation is carbon dioxide.

OBSERVATION

<table>
<thead>
<tr>
<th>SL.NO.</th>
<th>SAMPLE</th>
<th>TIME TAKEN</th>
<th>INFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

INFERENCE
The variation in the time taken for fermentation to take place in the different sugar solutions indicates that the simple sugars like glucose are fermented much quicker than the complex sugars.

PREPARATION OF YEAST SOLUTION
- 100ml of lukewarm distilled water + 10g of yeast granules.
2. DETERMINATION OF COLOUR AND pH IN THE GIVEN WATER SAMPLES

AIM

To investigate the colour and pH in the given water samples I, II, III and thereby determining the quality of water for consumption.

MATERIALS REQUIRED:

- pH paper and colour chart
- Dropper / glass rod
- Water samples
- Test tubes

PRINCIPLE

The colour of water sample ranges from colourless to green and yellowish brown depending upon the planktonic growth and suspended solids.

The pH of a solution is a measure of the concentration of hydrogen ions. The pH value can vary from 0 to 14. Solutions with a pH between 0 and 7 are acidic, while those with a pH between 7 and 14 are basic. pH 7 is considered neutral.

PROCEDURE

- Observe and tabulate the colour of the water samples I, II and III taken in test tubes against a white background.
- Take the three different water solutions in separate test tubes and label them.
- A piece of pH paper is dipped into the sample and compared with that of the colour on the pH chart.
- The approximate pH value of the samples is thus determined and the results tabulated.

OBSERVATION

<table>
<thead>
<tr>
<th>SL.NO.</th>
<th>SAMPLE</th>
<th>COLOUR OF THE SAMPLE</th>
<th>pH OF THE SAMPLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>II</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

INFEERENCE

- The pH of the sample ______ is found to be ______. Since it is closer to the neutral pH, it is fit for consumption.

PRECAUTIONS

- Use only the standard colour chart supplied with the pH paper for assessing the pH value.
- Keep the pH strips away from chemicals.
- Either use fresh fine dropper or glass rod for each different sample, or wash the dropper or rod well with water every time.
3. MARKING OF WILDLIFE SANCTUARY AND NATIONAL PARKS IN INDIA MAP

Mark the given Wildlife Sanctuary and National Park in the given map of India. Write its location and significance.

1. KAZIRANGA NATIONAL PARK

LOCATION: Golaghat and Nagaon districts of Assam

SIGNIFICANCE: Kaziranga National park’s 430 square kilometer area sprinkled with elephant-grass meadows, swampy lagoons, and dense forests is home to more than 2200 Indian one-horned rhinoceros, approximately 2/3rd of their total world population. The park is the breeding ground of elephants, wild water buffalo, and swamp deer. Over the time, the tiger population has also increased in Kaziranga, and that’s the reason why Kaziranga was declared as Tiger Reserve in 2006.

2. POINT CALIMERE WILDLIFE AND BIRD SANCTUARY

LOCATION: Point Calimere (Kodiakkarai), Nagapattinam (dt)

SIGNIFICANCE: It was created for the conservation of near threatened species, Black buck antelope, an endemic mammal species of India.

3. GIR NATIONAL PARK AND WILDLIFE SANCTUARY

LOCATION: Talala Gir in Gujarat

SIGNIFICANCE: Gir is the only natural habitat of world popular Asiatic Lions. It covers total area of 1412 square kilometers of which 258 Km forms the core area of the National Park. The Sambar is counted largest Indian Deer. The Gir forest is also known for the Chowsingha – the world’s only four horned antelope. The Jackal, striped Hyena and Indian Fox are some of the smaller carnivores found in Gir Forest.

4. PERIYAR WILDLIFE SANCTUARY

LOCATION: Kerala

SIGNIFICANCE: Apart from Elephants, the other animals to be seen in the Periyar sanctuary are Gaur, Wild Pigs, Sambar, Barking Deer, Mouse Deer, Dole or Indian Wild Dog and very rarely, a Tiger. There are, now, an estimated 40 tigers here.

5. MUDUMALAI WILDLIFE SANCTUARY AND NATIONAL PARK

LOCATION: Nilgiri hills, Nilgiri District, TamilNadu (Shares boundary with the states of Karnataka and Kerala).

SIGNIFICANCE: The protected area is home to several endangered and vulnerable species including Indian elephant, Bengal tiger, Gaur and Indian leopard. There are at least 266 species of birds in the sanctuary, including critically endangered Indian white-rumped vulture and long-billed vulture.
4. HUMAN MENDELIAN TRAITS

<table>
<thead>
<tr>
<th>DOMINANT</th>
<th>RECESSIVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cleft chin</td>
<td>Have cleft</td>
</tr>
<tr>
<td>Hair curl</td>
<td>Curly</td>
</tr>
<tr>
<td>Tongue rolling</td>
<td>Roller</td>
</tr>
<tr>
<td>Dimples</td>
<td>Dimple</td>
</tr>
<tr>
<td>Ear lobes</td>
<td>Free lobe</td>
</tr>
<tr>
<td>Interlocking fingers</td>
<td>Left thumb on top</td>
</tr>
<tr>
<td>Handedness</td>
<td>Right</td>
</tr>
<tr>
<td>Widow’s peak</td>
<td>Widow’s peak</td>
</tr>
<tr>
<td>Shape of face</td>
<td>Oval</td>
</tr>
<tr>
<td>Finger mid digital hair</td>
<td>Hair</td>
</tr>
</tbody>
</table>
4. HUMAN MENDELIAN TRAITS

AIM
To assess the distribution of various genetic traits in a given population.

MATERIALS REQUIRED
- List of traits
- Sheet of paper

PROCEDURE
- The students are divided into groups and the assessment of the various genetic traits are done, first individually and then among themselves.
- The phenotype and the possible genotypes are recorded in the tabular column.
- Based on the occurrence of the traits, the frequency of the dominant and recessive characters were discussed.

<table>
<thead>
<tr>
<th>TRAIT</th>
<th>POSSIBLE ALLELES</th>
<th>NO.</th>
<th>%</th>
<th>MY PHENOTYPE</th>
<th>MY GENOTYPE (DOMINANT OR RECESSIVE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cleft chin</td>
<td>Have cleft (C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No Cleft (c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hair curl</td>
<td>Curly (H)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Straight (h)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tongue rolling</td>
<td>Roller (T)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Non roller (t)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimples</td>
<td>Dimple (D)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No dimples (d)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Earlobes</td>
<td>Free lobe (F)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Attached (f)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interlocking fingers</td>
<td>Left thumb on top (L)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Right thumb on top (l)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Handedness</td>
<td>Right (R)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Left (r)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Widow’s peak</td>
<td>Widow’s peak (W)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Straight (w)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shape of the face</td>
<td>Oval (O)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Square (o)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finger mid- digital hair</td>
<td>Hair (M)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No hair (m)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

INFERENCES
Discuss and answer the following questions:
1) Did you have mostly dominant or recessive traits?
2) For which trait were most students dominant?
3) For which trait were most students recessive?
5. ABO BLOOD GROUPS - DEMONSTRATION EXPERIMENT

AIM
To find out the blood group of a class / school students.

MATERIAL REQUIRED
1. Human blood sample 5. Spirit (70% alcohol)
2. Antisera A and B 6. Slides / White tile
3. Antisera D 7. Cotton
4. Lancet 8. Mixing sticks

PRINCIPLE
The determination of ABO blood group is based on the agglutination reaction. The A, B and Rh antigens present on the surface of the RBC react with the corresponding antibodies (antisera) to form visible agglutination or clumping.

PROCEDURE
1. Take a clean dry slide / white tile and divide it into three divisions.
2. Wipe the middle finger with cotton moistened with 70% alcohol and allow to dry.
3. Prick disinfected area with sterile lancet.
4. Squeeze the finger and allow a drop of blood to fall on each division of the slide/ white tile.
5. Add one drop of antiserum into the appropriately labelled drop of blood on the slide/ white tile.
6. Mix serum and blood drops with the applicator stick.
7. Observe the mixtures for agglutination and record the blood groups.
8. Record the findings in a tabular form.

OBSERVATION

<table>
<thead>
<tr>
<th>Agglutination with….</th>
<th>Blood Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti A</td>
<td>Anti B</td>
</tr>
<tr>
<td>(+)-Agglutination</td>
<td>(-)-Non Agglutination</td>
</tr>
</tbody>
</table>

RESULT
The given blood is found to be_______group

WARNING: Use only sterilized lancets. Avoid using bell pins or other sharp objects for pricking.
A - PREPARED SLIDES

6. HUMAN SPERM

IDENTIFICATION
The given slide is identified as Human Sperm.

COMMENTS
1. The human sperm is microscopic, flagellated and a motile male gamete.
2. The sperm is composed of a head, neck, middle piece and a tail.
3. The head comprises of acrosome and nucleus.
4. The middle piece possesses mitochondria which produces energy in the form of ATP molecules.
5. The tail is the longest part and is slender and tapering.

7. HUMAN OVUM

IDENTIFICATION
The given slide is identified as human ovum.

COMMENTS
1. Human ovum is microscopic, non-cleidoic and a alecithal female gamete.
2. The ovum is surrounded by three coverings namely vitelline membrane, zona pellucida and corona radiata.
3. The cytoplasm of the egg is called ooplasm and contains a large nucleus called the germinal vesicle.
4. The narrow space between the vitelline membrane and zona pellucida is known as perivitelline space.
8. PARAMECIUM – CONJUGATION

IDENTIFICATION

The given slide is identified as Paramecium – Conjugation.

COMMENTS

1. Conjugation is a form of sexual reproduction, wherein two individuals called conjugants mutually exchange nuclear material and then get separated.

2. The pellicle and cytoplasm at the point of contact is broken and a protoplasmic bridge is formed.

3. The large pronucleus acts as female pronucleus and the smaller nucleus acts as male pronucleus.

4. The male pronucleus moves through the protoplasmic bridge and fuses with the female pronucleus to form the diploid nucleus.

9. ENTAMOEBA HISTOLYTICA

IDENTIFICATION

The given slide is identified as Entamoeba histolytica.

COMMENTS

1. Entamoeba is an endoparasitic protozoan which causes amoebiasis or amoebic dysentery.

2. It lives in the lumen of the large intestine and feeds on the epithelial cells.

3. The infective stage of this parasite is the trophozoite.

4. The symptoms of amoebiasis are ulceration, bleeding, abdominal pain and stools with excess mucus.
10. THYMUS - T.S

IDENTIFICATION
The given slide is identified as thymus gland – T.S.

COMMENTS
1. Thymus is a primary lymphoid bilobed organ located behind the sternum and above the heart.
2. It has many lobules separated from each other by connective tissue called septa.
3. Each lobule is differentiated into an outer cortex and inner medulla.
4. Thymus gland is mainly involved in proliferation and maturation of T – cells (thymus dependent cell) and secretion of thymosin hormone.

11. LYMPH NODE – T.S

IDENTIFICATION
The given slide is identified as lymph node – T.S.

COMMENTS
1. Lymph node is a small bean shaped structure found along the course of lymphatic duct.
2. Lymph node has three zones: cortex, paracortex and medulla.
3. The cortex contains B lymphocytes, macrophages and follicular dendritic cells.
4. The medulla consists of sparsely populated B-lymphocytes, which secrete antibody molecules.
5. The paracortex zone lies between the cortex and medulla and consists of richly populated T cells and dendritic cell.
12. **tRNA**

IDENTIFICATION

The given model is identified as tRNA (transfer RNA).

COMMENTS

1. tRNA was formerly referred to as sRNA (soluble RNA).
2. It is a type of RNA and has a clover leaf structure.
3. It is a small RNA molecule, typically between 70 to 90 nucleotides in length.
4. It is an adapter molecule composed of RNA that serves as the physical link between the mRNA and the amino acid sequence of proteins.
5. It transports activated amino acids from the cellular amino acid pool to the site of protein synthesis.

13. **HOMOLOGOUS ORGANS**

IDENTIFICATION

The given picture is identified as homologous organs.

COMMENTS

1. Structures which are similar in origin but perform different functions are called homologous structure. E.g. Fore limbs of terrestrial vertebrates bird, bat, whale, horse, and human.
2. The forelimbs of these organisms perform different functions, and have similar anatomical structures such as humerus, radius, ulna, carpals, metacarpals and phalanges.
3. In these animals same structures develop along different directions due to adaptations to different needs. This is referred to as divergent evolution.
14. ANALOGOUS ORGANS

IDENTIFICATION

The given picture is identified as analogous organs.

COMMENTS

1. Organism having different structural patterns but similar function is termed as analogous structure. E.g. Wings of bird and insects (Butterfly, dragon fly).
2. The structures of these animals are not anatomically similar though they perform similar functions.
3. The analogous structures are developed due to convergent evolution – different structures evolving for the same function.

15. ANIMAL CLONING – DOLLY (SHEEP)

IDENTIFICATION

The given picture is identified as cloning of animal – Dolly (Sheep)

COMMENTS

1. Cloning is the process to produce genetically identical individuals of an organism either naturally or artificially.
2. Dolly was the first mammal (sheep) clone developed by Ian Wilmut and Campbell in 1997.
3. Dolly was cloned from a differentiated somatic cell taken from an adult animal without the process of fertilization.
4. In this process, the udder cells (somatic cells) of mammary gland from a donor sheep were isolated. An ovum (egg cell, germ cell) was taken from the ovary of another sheep and enucleated.
5. The udder cell and enucleated ovum were fused and implanted into a surrogate mother. Five months later, dolly was born.
16. HUMAN INSULIN PRODUCTION- FLOWCHART

IDENTIFICATION

The given picture is identified as the flow chart of Human Insulin Production.

COMMENTS

1. Production of insulin by recombinant DNA technology started in the late 1970s.
2. This technique involved the insertion of human insulin gene on the plasmids of E.coli.
3. The inserted gene synthesizes the polypeptide chains A and B segments linked by a third chain (C) as a precursor called Pre-Pro insulin.
4. The linking C chain is excised, leaving, A and B polypeptide chains.
5. Insulin was the first ever pharmaceutical product of rDNA technology, administered to humans.

C - GENETICS

17. NORMAL HUMAN KARYOTYPE

IDENTIFICATION

The given photograph is identified as normal karyotype of human beings.

COMMENTS

1. Karyotyping is a technique through which a complete set of chromosomes are separated from a cell and are arranged in pairs.
2. A diagrammatic representation of chromosomes is called an idogram.
3. There are 22 pairs of autosomes and a pair of allosomes (XX- female, XY – male) arranged based on their size, shape, banding pattern and position of centromere.
4. It helps in gender identification and to detect genetic diseases.
18. AUTOSOMAL ANOMALY – PATAU’S SYNDROME

IDENTIFICATION

The given photograph is identified as Patau’s Syndrome.

COMMENTS

1. It is one of the autosomal aneuploids formed due to trisomic condition of chromosome 13.
2. It is caused by meiotic non-disjunction of chromosomes.
3. The symptoms are multiple and severe body malformation with profound mental deficiency.
4. The individuals have small head with small eyes, cleft palate and malformation of brain.

19. SEX CHROMOSOMAL ANOMALY - TURNER’S SYNDROME

IDENTIFICATION

The given photograph is identified as Turner’s syndrome.

COMMENTS

1. This genetic disorder is due to the loss of an X chromosome resulting in a karyotype of 44A+XO = 45.
2. It is caused due to meiotic non-disjunction of allosomes.
3. These individuals are sterile female with short stature and webbed neck.
4. They also have under developed breasts and gonads with lack of menstrual cycle during puberty.
20. X – LINKED DISEASE - HAEMOPHILIA (BLEEDER'S DISEASE)

IDENTIFICATION

The given pedigree chart is identified as the genetic disease Haemophilia.

COMMENTS

1. Haemophilia or bleeder’s disease (Royal disease) is the most notorious of all sex-linked diseases. The person suffering from this disease bleeds for a long period (30 minutes to 24 hours) during injury due to the failure of blood coagulation.
2. It is caused by a recessive X – linked gene more common in men than women.
3. The females are carriers of the disease and would transmit the disease to 50% of their sons even if the male parent is normal.
4. It follows criss – cross or zig – zag pattern of inheritance (i.e., grandfather transmits his X linked character to his grandson through carrier daughter).

DISCUSSION QUESTIONS

1. Observe the given pedigree chart and identify the affected individuals and carriers in the II generation.
2. Why are men affected often in X linked inheritance?
3. What is the pattern of inheritance in the given pedigree chart?
4. Why are women said to be carriers in X linked inheritance?
5. How is haemophilia caused?
21. AUTOSOMAL DISEASE –SICKLE CELL ANEMIA

IDENTIFICATION

The given pedigree chart is identified as the genetic disease sickle cell anaemia.

COMMENTS

1. It is an autosome linked recessive trait that can be transmitted from parents to the offspring, if both the parents are carriers for the gene (heterozygous).
2. The genotype Hb\(^5\) Hb\(^5\) causes sickle cell anemia, while the genotype Hb\(^4\) and Hb\(^5\) individuals appear apparently unaffected but they are carrier of the disease.
3. Sickle cell anemia is a classical example of point mutation.
4. The defect is caused by the substitution of Glutamic acid by valine at the sixth position of the beta chain of the haemoglobin molecules.

DISCUSSION QUESTIONS

1. Observe the given pedigree chart and give reasons for the occurrence of the disease in the second generation.
2. Will males and females be equally affected in this type of inheritance? Give reasons.
3. What is the genotype of the diseased and carrier sickle sell individual?
4. How is Sickle cell anemia disease caused?
PROJECT WORK

1. Determine the universality of variations by studying thumb impressions in a given population
 a. Collect around 15 – 25 thumb impressions from within the families of your area or among classes of your school.
 b. Identify and compare the occurrence of the general patterns like circular (whorls), loops and arches. Record your results in the form of ‘Bar diagram’ using frequencies of the pattern collected in a graph sheet.
 c. Eventhough many of them shared the same pattern of imprints, no two imprints were the same.

<table>
<thead>
<tr>
<th>S. No</th>
<th>Pattern</th>
<th>No. of imprints</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Whorls</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Loops</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Arches</td>
<td></td>
</tr>
</tbody>
</table>

2. Study the effect of a local industry on the environment
 a. Select an industry in your area.
 b. Take a detailed note of the source of energy used, raw materials (local or imported), product formed etc.,
 c. List the possible types of pollutants released by the industry (air/water/soil)
 d. Check the safety measures undertaken by the management to comply with the regulations set by the Pollution Control Board

3. Study the ecological role of some insects and birds in a given locality
 a. Select an area in school or neighbourhood to observe insects and birds.
 b. Study their role as pollinator, agent in seed dispersal, vector for transmission of disease, predator, prey etc.,

4. Visit to a zoological park/wildlife sanctuary in your locality
 a. Observe the variety of birds and animals in the zoo.
 b. Tabulate based on the status – endemic, endangered, abundance etc.,

5. Visit to a nearby aquatic habitat
 a. Select a nearby waterbody (lake or pond).
 b. Observe the aquatic fauna and record your findings.
 c. Physico – chemical factors like pH, temperature, turbidity, salinity can also be noted.
BIOLOGY - ZOOLOGY PRACTICAL

MODEL QUESTION PAPER

CLASS: XII

TIME: 1½ Hrs

MARKS: 7½

1. Analyse the given samples I, II and III for fermentation process. Write the aim, principle, procedure and inference of the experiment.

 (Procedure – 1; Experiment- 1; Result – ½ =2½)

2. Analyse the given water samples (I,II and III) for colour and pH. Tabulate your results and find out which water is suitable for consumption.

 (or)

 Mark the location of the given Wildlife Sanctuary and National parks in India map Add a note on its location and significance.

 (or)

 Mention any 4 Mendelian traits in your body and write their phenotype and genotype. (2)

3. Identify the given slide ‘A’. Give any 2 diagnostic features with diagram. (1)

4. Identify the given picture ‘B’. Write any 2 comments. (1)

5. Identify the chromosomal abnormality in ‘C’. Write any 2 characteristic features.

 (or)

 Analyse and identify the genetic disease in the pedigree chart given in ‘C’. Answer the given questions. (1)

NOTE: Any relevant points and comments apart from those provided in the practical manual must also be considered for evaluation.
SYLLABUS

I. REPRODUCTION
1. Human Sperm
2. Human ovum
3. Paramecium – conjugation

II. GENETICS
1. ABO blood grouping
2. Analysing Mendelian traits in a given population
3. tRNA - Structure
4. Homologous organs
5. Analogous organs
6. Normal Human karyotype
7. Autosomal Anomaly – Patau’s Syndrome
8. Sex Chromosomal Anomaly – Turner’s Syndrome
9. Autosomal Disease – Sickle cell anemia
10. X–Linked Disease - Haemophilia

III. HEALTH & DISEASES, IMMUNOLOGY AND MICROBES IN HUMAN WELFARE
1. Fermentation by yeast
2. *Entamoeba histolytica*
3. Thymus – T.S
4. Lymph node – T.S

IV. BIOTECHNOLOGY
1. Animal cloning - Dolly (Sheep)
2. Insulin production - Flowchart

V. ECOLOGY
1. Marking of Wildlife Sanctuary and National parks in India map
2. Determination of colour and pH in the given water samples
Biology - Zoology - Higher Secondary Second Year

Practical Manual - List of Authors and Reviewers

CHAIR PERSONS AND ADVISORY COMMITTEE
Dr. SULTAN AHMED ISMAIL
Scientist
Eco-science Research Foundation
Chennai.

Dr. P.K. KALEENA
Associate Professor
Department of Zoology
Presidency College
Chennai.

CONTENT WRITERS
Dr. J. SAVARIMUTHU MICHAEL
P.G. Assistant in Zoology
Carmel Higher Secondary School
Nagercoil, Kanyakumari Dist.

Mr. V. ELANGOVAN
P.G. Assistant in Zoology
Sir M. Ct. M. Higher Secondary School
Pursawalkam, Chennai.

Mrs. P. SOPHIA SELVAKUMARI
P.G. Assistant in Zoology
Bentinck Higher Secondary School for Girls
Vepery, Chennai.

SUBJECT EXPERT AND COORDINATOR
DR. S. SHAMEEM
Deputy Director
State Council of Educational Research and Training
Chennai.

COORDINATORS
Dr. V.T. SHANTHI
Senior Lecturer,DIET,Tirur

Mrs. B.SELVI
Lecturer
State Council of Educational Research and Training
Chennai.

REVIEWERS
DR. S. MUTHAZHAGU
Associate Professor (Rtd.)
A.A Govt. Arts College, Cheyyar.

Dr. V. USHA RANI
Associate Professor and HOD (Rtd)
Department of Zoology
Quaide-E-Millath Government College for Women
Chennai.

LAYOUT AND ILLUSTRATIONS
Gopu Rasuvel
V. S. Johnsmith

23