HIGHER SECONDARY SECOND YEAR

BUSINESS MATHEMATICS
AND
STATISTICS

VOLUME - I

A publication under Free Textbook Programme of Government of Tamil Nadu

Department of School Education

Untouchability is Inhuman and a Crime
NOT FOR SALE

Content Creation

State Council of Educational Research and Training
© SCERT 2019

Printing & Publishing

Tamil Nadu Textbook and Educational Services Corporation
www.textbooksonline.tn.nic.in
HOW TO USE THE BOOK?

Career Options
- List of Further Studies & Professions.

Learning Objectives:
- Learning objectives are brief statements that describe what students will be expected to learn by the end of school year, course, unit, lesson or class period.
- Additional information about the concept.
- Amazing facts, Rhetorical questions to lead students to Mathematical inquiry.

Exercise
- Assess students’ critical thinking and their understanding.

ICT
- To enhance digital skills among students.

Web links
- List of digital resources.
- To motivate the students to further explore the content digitally and take them into virtual world.

Miscellaneous Problems
- Additional problems for the students.

Glossary
- Tamil translation of Mathematical terms.

Book for References
- List of related books for further studies of the topic.

LET'S USE THE QR CODE!

- Download the QR code scanner from the Google PlayStore/Apple App Store into your smartphone.
- Open the QR code scanner application.
- Once the scanner button in the application is clicked, camera opens and then bring it closer to the QR code in the text book.
- Once the camera detects the QR code, a URL appears in the screen. Click the URL and go to the content page.
Higher Secondary students who have taken commerce with Business Mathematics and Statistics can take up careers in BCA, B.Com., and B.Sc. Statistics. Students who have taken up commerce stream, have a good future in banking and financial institutions.

A lot of students choose to do B.Com with a specialization in computers. Higher Secondary Commerce students planning for further studies can take up careers in professional fields such as Company Secretary, Chartered Accountant (CA), ICAI and so on. Others can take up bachelor’s degree in commerce (B.Com), followed by M.Com, Ph.D and M.Phil. There are wide range of career opportunities for B.Com graduates.

After graduation in commerce, one can choose MBA, MA Economics, MA Operational and Research Statistics at Postgraduate level. Apart from these, there are several diploma, certificate and vocational courses which provide entry level jobs in the field of commerce.

Career chart for Higher Secondary students who have taken commerce with Business Mathematics and Statistics.

<table>
<thead>
<tr>
<th>Courses</th>
<th>Institutions</th>
<th>Scope for further studies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Shri Ram College of Commerce (SRCC), Delhi</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Symbiosis Society's College of Arts & Commerce, Pune.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• St. Joseph's College, Bangalore</td>
<td></td>
</tr>
<tr>
<td>B.Sc Statistics</td>
<td>• Presidency College, Chepauk, Chennai.</td>
<td>M.Sc., Statistics</td>
</tr>
<tr>
<td></td>
<td>• Madras Christian College, Tambaram</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Loyola College, Chennai.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• D.R.B.C.C Hindu College, Pattabiram, Chennai.</td>
<td></td>
</tr>
<tr>
<td>B.B.A., LLB, B.A., LLB, B.Com., LL.B. (Five years integrated Course)</td>
<td>• Government Law College.</td>
<td>M.L.</td>
</tr>
<tr>
<td></td>
<td>• School of excellence, Affiliated to Dr.Ambethkar Law University</td>
<td></td>
</tr>
<tr>
<td>M.A. Economics (Integrated Five Year course) – Admission based on All India Entrance Examination</td>
<td>• Madras School of Economics, Kotturpuram, Chennai.</td>
<td>Ph.D.,</td>
</tr>
<tr>
<td>B.S.W.</td>
<td>• School of Social studies, Egmore, Chennai</td>
<td>M.S.W</td>
</tr>
</tbody>
</table>
CONTENTS

<table>
<thead>
<tr>
<th></th>
<th>Applications of Matrices and Determinants</th>
<th>1-39</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Rank of a Matrix</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>Cramer’s Rule</td>
<td>22</td>
</tr>
<tr>
<td>1.3</td>
<td>Transition Probability Matrices</td>
<td>28</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Integral Calculus – I</th>
<th>40-93</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Indefinite Integrals</td>
<td>41</td>
</tr>
<tr>
<td>2.2</td>
<td>Definite Integrals</td>
<td>66</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Integral Calculus – II</th>
<th>94-125</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>The Area of the region bounded by the curves</td>
<td>94</td>
</tr>
<tr>
<td>3.2</td>
<td>Application of Integration in Economics and Commerce</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Differential Equations</th>
<th>126-166</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Formation of ordinary differential equations</td>
<td>127</td>
</tr>
<tr>
<td>4.2</td>
<td>First order First degree Differential Equations</td>
<td>134</td>
</tr>
<tr>
<td>4.3</td>
<td>Second Order First Degree linear differential equations with constant coefficient</td>
<td>153</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Numerical Methods</th>
<th>167-198</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Finite differences</td>
<td>167</td>
</tr>
<tr>
<td>5.2</td>
<td>Interpolation</td>
<td>181</td>
</tr>
</tbody>
</table>

Answers | 199-206 |

Books for Reference | 207 |
SYLLABUS

1. APPLICATIONS OF MATRICES AND DETERMINANTS (20 periods)

| Rank of a Matrix | Concept of Rank of a matrix - Elementary Transformations and Equivalent matrices - Echelon form and Finding the rank of the matrix up to the order of 3 x 4 - Testing the consistency of non homogeneous linear equations (two and three variables) by rank method. Cramer’s Rule - Non - Homogeneous linear equations up to 3 Variables. Transition Probability Matrices - Forecasting the succeeding state when the initial market share is given. |

2. INTEGRAL CALCULUS – I (25 periods)

| Indefinite Integrals | Concept of Indefinite Integral - Some standard results - Integration by decomposition - Integration by parts - Substitution method - Some special type of Integrals. Definite Integrals | The fundamental theorems of Integral calculus - Properties of Definite Integrals - Gamma Integral (Statement only) - Definite Integral as the limit of a sum (Statement only) |

3. INTEGRAL CALCULUS – II (21 periods)

| The Area of the region bounded by the curves | Geometrical interpretation of the definite integral as area under a curve. Application of Integration in Economics and Commerce - Cost functions from marginal cost functions - Revenue functions from marginal revenue functions - The demand function from elasticity of demand - Consumer’s Surplus - Producer’s Surplus. |

4. DIFFERENTIAL EQUATIONS (24 periods)

\[a \frac{d^2y}{dx^2} + b \frac{dy}{dx} + cy = \alpha e^{\lambda x} \]
where \(\alpha \) and \(\lambda \) are reals |

5. Numerical Methods (15 periods)

Applications of Matrices and Determinants

Introduction

In our daily life, We use Matrices for taking seismic surveys. They are used for plotting graphs, statistics and also to do Scientific studies in almost different fields. Matrices are used in representing the real world data like the traits of people’s population, habits etc..

Determinants have wonderful algebraic properties and occupied their proud place in linear algebra, because of their role in higher level algebraic thinking.

Brahmagupta (born c.598 AD(CE) - c.668 AD(CE)) was an Indian Mathematician and astronomer. He was the first to give rules to compute with zero. His contribution in Matrix is called as Brahmagupta Matrix.

\[
B(x , y) = \begin{pmatrix} x & y \\ \pm ty & \pm x \end{pmatrix}.
\]

Learning Objectives

On Completion of this chapter, the students are able to understand

- the concept of rank of a matrix.
- elementary transformations and equivalent matrices.
- echelon form of a matrix.
- the rank of the matrix.
- testing the consistency of a non-homogeneous linear equations.
- applications of linear equations
- the concept of Cramer’s rule to solve non-homogenous linear equations.
- forecasting the succeeding state when the initial market share is given.
1.1 Rank of a Matrix

Matrices are one of the most commonly used tools in many fields such as Economics, Commerce and Industry.

We have already studied the basic properties of matrices. In this chapter we will study about the elementary transformations to develop new methods for various applications of matrices.

1.1.1 Concept

With each matrix, we can associate a non-negative integer called its rank.

Definition 1.1

The rank of a matrix A is the order of the largest non-zero minor of A and is denoted by $\rho(A)$.

In other words, a positive integer ‘r’ is said to be the rank of a non-zero matrix A, if

(i) there is at least one minor of A of order ‘r’ which is not zero and

(ii) every minor of A of order greater than ‘r’ is zero.

Example 1.1

Find the rank of the matrix \[
\begin{pmatrix}
1 & 5 \\
3 & 9
\end{pmatrix}
\]

Solution:

Let $A = \begin{pmatrix} 1 & 5 \\ 3 & 9 \end{pmatrix}$

Order of A is $2 \times 2 \therefore \rho(A) \leq 2$

Consider the second order minor

\[
\begin{vmatrix}
1 & 5 \\
3 & 9
\end{vmatrix}
\]

$= -6 \neq 0$

There is a minor of order 2, which is not zero. $\therefore \rho(A) = 2$

In cryptography, we are using matrix concepts.
Example 1.2

Find the rank of the matrix \(\begin{pmatrix} -5 & -7 \\ 5 & 7 \end{pmatrix} \)

Solution:

Let \(A = \begin{pmatrix} -5 & -7 \\ 5 & 7 \end{pmatrix} \)

Order of \(A \) is \(2 \times 2 \) \(\therefore \rho(A) \leq 2 \)

Consider the second order minor \(\begin{vmatrix} -5 & -7 \\ 5 & 7 \end{vmatrix} = 0 \)

Since the second order minor vanishes, \(\rho(A) \neq 2 \)

Consider a first order minor \(\begin{vmatrix} -5 \end{vmatrix} \neq 0 \)

There is a minor of order 1, which is not zero

\(\therefore \rho(A) = 1 \)

Example 1.3

Find the rank of the matrix \(\begin{pmatrix} 0 & -1 & 5 \\ 2 & 4 & -6 \\ 1 & 1 & 5 \end{pmatrix} \)

Solution:

Let \(A = \begin{pmatrix} 0 & -1 & 5 \\ 2 & 4 & -6 \\ 1 & 1 & 5 \end{pmatrix} \)

Order of \(A \) is \(3 \times 3 \).

\(\therefore \rho(A) \leq 3 \)

Consider the third order minor \(\begin{vmatrix} 0 & -1 & 5 \\ 2 & 4 & -6 \\ 1 & 1 & 5 \end{vmatrix} = 6 \neq 0 \)

There is a minor of order 3, which is not zero

\(\therefore \rho(A) = 3. \)

Example 1.4

Find the rank of the matrix \(\begin{pmatrix} 5 & 3 & 0 \\ 1 & 2 & -4 \\ -2 & -4 & 8 \end{pmatrix} \)
Solution:
Let
\[
A = \begin{pmatrix}
5 & 3 & 0 \\
1 & 2 & -4 \\
-2 & -4 & 8
\end{pmatrix}
\]
Order of \(A \) is \(3 \times 3 \).
\[
\therefore \rho(A) \leq 3.
\]
Consider the third order minor
\[
\begin{vmatrix}
5 & 3 & 0 \\
1 & 2 & -4 \\
-2 & -4 & 8
\end{vmatrix} = 0
\]
Since the third order minor vanishes, therefore \(\rho(A) \neq 3 \)
Consider a second order minor
\[
\begin{vmatrix}
5 & 3 \\
1 & 2
\end{vmatrix} = 7 \neq 0
\]
There is a minor of order 2, which is not zero.
\[
\therefore \rho(A) = 2.
\]
Example 1.5
Find the rank of the matrix
\[
\begin{pmatrix}
1 & 2 & -1 & 3 \\
2 & 4 & 1 & -2 \\
3 & 6 & 3 & -7
\end{pmatrix}
\]
Solution:
Let \(A = \begin{pmatrix}
1 & 2 & -1 & 3 \\
2 & 4 & 1 & -2 \\
3 & 6 & 3 & -7
\end{pmatrix} \)
Order of \(A \) is \(3 \times 4 \).
\[
\therefore \rho(A) \leq 3.
\]
Consider the third order minors
\[
\begin{vmatrix}
1 & 2 & -1 \\
2 & 4 & 1 \\
3 & 6 & 3
\end{vmatrix} = 0, \quad
\begin{vmatrix}
1 & -1 & 3 \\
2 & 1 & -2 \\
3 & 3 & -7
\end{vmatrix} = 0
\]
Since all third order minors vanishes, \(\rho(A) \neq 3 \).
Now, let us consider the second order minors,
Consider one of the second order minors \[
\begin{vmatrix}
2 & -1 \\
4 & 1
\end{vmatrix} = 6 \neq 0
\]

There is a minor of order 2 which is not zero.
\[
\therefore \rho(A) = 2.
\]

1.1.2 Elementary Transformations and Equivalent matrices

Elementary transformations of a matrix

(i) Interchange of any two rows (or columns): \(R_i \leftrightarrow R_j \) (or \(C_i \leftrightarrow C_j \)).

(ii) Multiplication of each element of a row (or column) by any non-zero scalar \(k \): \(R_i \rightarrow kR_i \) (or \(C_i \rightarrow kC_i \)).

(iii) Addition to the elements of any row (or column) the same scalar multiples of corresponding elements of any other row (or column):
\[
R_i \rightarrow R_i + kR_j \) (or \(C_i \rightarrow C_i + kC_j \)).

Equivalent Matrices

Two matrices \(A \) and \(B \) are said to be equivalent if one is obtained from the another by applying a finite number of elementary transformations and we write it as \(A \sim B \) or \(B \sim A \).

1.1.3 Echelon form and finding the rank of the matrix (upto the order of 3×4)

A matrix \(A \) of order \(m \times n \) is said to be in echelon form if

(i) Every row of \(A \) which has all its entries 0 occurs below every row which has a non-zero entry.

(ii) The number of zeros before the first non-zero element in a row is less then the number of such zeros in the next row.

Example 1.6

Find the rank of the matrix
\[
A = \begin{pmatrix}
1 & 2 & 3 \\
2 & 3 & 4 \\
3 & 5 & 7
\end{pmatrix}
\]

Solution:

The order of \(A \) is 3×3.
\[
\therefore \rho(A) \leq 3.
\]

Let us transform the matrix \(A \) to an echelon form by using elementary transformations.

Applications of Matrices and Determinants
Matrix A

$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 5 & 7 \\ 1 & 2 & 3 \\ 0 & -1 & -2 \\ 0 & -1 & -2 \end{pmatrix}$

$\sim \begin{pmatrix} 1 & 2 & 3 \\ 0 & -1 & -2 \\ 0 & -1 & -2 \end{pmatrix}$

$\sim \begin{pmatrix} 1 & 2 & 3 \\ 0 & -1 & -2 \\ 0 & 0 & 0 \end{pmatrix}$

The above matrix is in echelon form

The number of non zero rows is 2

\therefore Rank of A is 2.

$\rho(A) = 2$.

Example 1.7

Find the rank of the matrix

$A = \begin{pmatrix} 0 & 1 & 2 & 1 \\ 1 & 2 & 3 & 2 \\ 3 & 1 & 1 & 3 \end{pmatrix}$

Solution:

The order of A is 3×4.

$\therefore \rho(A) \leq 3$.

Let us transform the matrix A to an echelon form

Matrix A

$A = \begin{pmatrix} 0 & 1 & 2 & 1 \\ 1 & 2 & 3 & 2 \\ 3 & 1 & 1 & 3 \end{pmatrix}$

$\sim \begin{pmatrix} 1 & 2 & 3 & 2 \\ 0 & 1 & 2 & 1 \\ 3 & 1 & 1 & 3 \end{pmatrix}$

$\sim \begin{pmatrix} 1 & 2 & 3 & 2 \\ 0 & -5 & -8 & -3 \\ 1 & 2 & 3 & 2 \end{pmatrix}$

$\sim \begin{pmatrix} 1 & 2 & 3 & 2 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 2 & 2 \end{pmatrix}$

The number of non zero rows is 3.

$\therefore \rho(A) = 3$.

Note

A row having atleast one non-zero element is called as non-zero row.
Example 1.8

Find the rank of the matrix \(A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 3 & 4 & 5 & 2 \\ 2 & 3 & 4 & 0 \end{pmatrix} \)

Solution:

The order of \(A \) is \(3 \times 4 \).

\[\therefore \rho(A) \leq 3. \]

Let us transform the matrix \(A \) to an echelon form

<table>
<thead>
<tr>
<th>Matrix (A)</th>
<th>Elementary Transformation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A = \begin{pmatrix} 1 & 1 & 1 & 1 \ 3 & 4 & 5 & 2 \ 2 & 3 & 4 & 0 \end{pmatrix})</td>
<td>(R_2 \rightarrow R_2 - 3R_1)</td>
</tr>
<tr>
<td>(\sim \begin{pmatrix} 1 & 1 & 1 & 1 \ 0 & 1 & 2 & 1 \ 0 & 1 & 2 & 1 \end{pmatrix})</td>
<td>(R_3 \rightarrow R_3 - 2R_1)</td>
</tr>
<tr>
<td>(\sim \begin{pmatrix} 1 & 1 & 1 & 1 \ 0 & 1 & 2 & 1 \ 0 & 0 & 0 & -1 \end{pmatrix})</td>
<td>(R_3 \rightarrow R_3 - R_2)</td>
</tr>
</tbody>
</table>

The number of non zero rows is 3.

\[\therefore \rho(A) = 3. \]

Consistency of Equations

System of linear equations in two variables

We have already studied, how to solve two simultaneous linear equations by matrix inversion method.

Recall

Linear equations can be written in matrix form \(AX = B \), then the solution is \(X = A^{-1}B \), provided \(|A| \neq 0 \)

Consider a system of linear equations with two variables,

\[\begin{align*}
ax + by &= h \\
 cx + dy &= k
\end{align*} \quad (1) \]

Where \(a, b, c, d, h \) and \(k \) are real constants and neither \(a \) and \(b \) nor \(c \) and \(d \) are both zero.
For any two given lines L_1 and L_2, one and only one of the following may occur.

L_1 and L_2 intersect at exactly one point

L_1 and L_2 are coincident

L_1 and L_2 are parallel and distinct.

(see Fig 1.1) In the first case, the system has a unique solution corresponding to the single point of intersection of the two lines.

In the second case, the system has infinitely many solutions corresponding to the points lying on the same line.

Finally in the third case, the system has no solution because the two lines do not intersect.

Let us illustrate each of these possibilities by considering some specific examples.

(a) **A system of equations with exactly one solution**

Consider the system $2x - y = 1$, $3x + 2y = 12$ which represents two lines intersecting at $(2, 3)$ i.e $(2, 3)$ lies on both lines. So the equations are consistent and have unique solution.

(b) **A system of equations with infinitely many solutions**

Consider the system $2x - y = 1$, $6x - 3y = 3$ which represents two coincident lines. We find that any point on the line is a solution. The equations are consistent and have infinite sets of solutions such as $(0, -1)$, $(1, 1)$ and so on. Such a system is said to be dependent.

(c) **A system of equations that has no solution**

Consider the system $2x - y = 1$, $6x - 3y = 12$ which represents two parallel straight lines. The equations are inconsistent and have no solution.
System of non Homogeneous Equations in three variables

A linear system composed of three linear equations with three variables \(x, y\) and \(z\) has the general form

\[
\begin{align*}
ax + by + cz &= d_1 \\
ax + by + c_2z &= d_2 \\
ax + b_3y + c_3z &= d_3
\end{align*}
\]

(2)

A linear equation \(ax + by + cz = d\) (\(a, b\) and \(c\) not all equal to zero) in three variables represents a plane in three dimensional space. Thus, each equation in system (2) represents a plane in three dimensional space, and the solution(s) of the system is precisely the point(s) of intersection of the three planes defined by the three linear equations that make up the system. This system has one and only one solution, infinitely many solutions, or no solution, depending on whether and how the planes intersect one another. Figure 1.2 illustrates each of these possibilities.

![Fig.1.2](image_url)

(a) A Unique solution
(b) Infinitely many solutions
(c) No solution

In Figure 1.2(a), the three planes intersect at a point corresponding to the situation in which system (2) has a unique solution.

Figure 1.2 (b) depicts a situation in which there are infinitely many solutions to the system. Here the three planes intersect along a line, and the solutions are represented by the infinitely many points lying on this line.

In Figure 1.2 (c), the three planes are parallel and distinct, so there is no point in common to all three planes; system (2) has no solution in this case.

Note

Every system of linear equations has no solution, or has exactly one solution or has infinitely many solutions.

Applications of Matrices and Determinants
An arbitrary system of ‘m’ linear equations in ‘n’ unknowns can be written as
\[a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = b_1 \\
 a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n = b_2 \\
\vdots \quad \vdots \quad \vdots \quad \vdots \\
 a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n = b_m \]
where \(x_1, x_2, \ldots, x_n \) are the unknowns and the subscripted \(a \)'s and \(b \)'s denote the constants.

Augmented matrices

A system of ‘m’ linear equations in ‘n’ unknowns can be abbreviated by writing only the rectangular array of numbers.

\[
\begin{bmatrix}
 a_{11} & a_{12} & \ldots & a_{1n} & b_1 \\
 a_{21} & a_{22} & \ldots & a_{2n} & b_2 \\
 \vdots & \vdots & \ddots & \vdots & \vdots \\
 a_{m1} & a_{m2} & \ldots & a_{mn} & b_m
\end{bmatrix}
\]

This is called the augmented matrix for the system and \(\begin{bmatrix} a_{11} & a_{12} & \ldots & a_{1n} \\
 a_{21} & a_{22} & \ldots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{m1} & a_{m2} & \ldots & a_{mn}\end{bmatrix} \) is the coefficient matrix.

Consider the following system of equations
\[
\begin{aligned}
x + y + 2z &= 9 \\
2x + 4y - 3z &= 1 \\
3x + 6y - 5z &= 0
\end{aligned}
\]

\[
\begin{bmatrix}
 1 & 1 & 2 \\
 2 & 4 & -3 \\
 3 & 6 & -5
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 z
\end{bmatrix}
=
\begin{bmatrix}
 9 \\
 1 \\
 0
\end{bmatrix}
\]

\[A \quad X \quad = \quad B \]

\[A = \begin{bmatrix}
 1 & 1 & 2 \\
 2 & 4 & -3 \\
 3 & 6 & -5
\end{bmatrix} \text{ is the coefficient matrix} \]

\[[A, B] = \begin{bmatrix}
 1 & 1 & 2 & 9 \\
 2 & 4 & -3 & 1 \\
 3 & 6 & -5 & 0
\end{bmatrix} \text{ is the augmented matrix.} \]

1.1.4 Testing the consistency of non homogeneous linear equations (two and three variables) by rank method.

Consider the equations \(A X = B \) in ‘n’ unknowns.
(i) If $\rho ([A, B]) = \rho (A)$, then the equations are consistent.

(ii) If $\rho ([A, B]) = \rho (A) = n$, then the equations are consistent and have unique solution.

(iii) If $\rho ([A, B]) = \rho (A) < n$, then the equations are consistent and have infinitely many solutions.

(iv) If $\rho ([A, B]) \neq \rho (A)$ then the equations are inconsistent and has no solution.

Example 1.9

Show that the equations $x + y = 5, 2x + y = 8$ are consistent and solve them.

Solution:

The matrix equation corresponding to the given system is

$$
\begin{pmatrix}
1 & 1 \\
2 & 1 \\
\end{pmatrix}
\begin{pmatrix}
x \\
y \\
\end{pmatrix}
=
\begin{pmatrix}
5 \\
8 \\
\end{pmatrix}
$$

Matrix A	**Augmented matrix** $[A,B]$	**Elementary Transformation**
$$
\begin{pmatrix}
1 & 1 \\
2 & 1 \\
\end{pmatrix}
\sim
\begin{pmatrix}
1 & 1 & 5 \\
2 & 1 & 8 \\
\end{pmatrix}
$$

$R_2 \rightarrow R_2 - 2R_1$

$\rho (A) = 2$ | $\rho ([A,B]) = 2$

Number of non-zero rows is 2.

$\rho (A) = \rho ([A,B]) = 2 = \text{Number of unknowns}.$

The given system is consistent and has unique solution.

Now, the given system is transformed into

$$
\begin{pmatrix}
1 & 1 \\
0 & -1 \\
\end{pmatrix}
\begin{pmatrix}
x \\
y \\
\end{pmatrix}
=
\begin{pmatrix}
5 \\
-2 \\
\end{pmatrix}
$$

$x + y = 5$

$y = 2$

$\therefore (1) \Rightarrow x + 2 = 5$

$x = 3$

Solution is $x = 3, y = 2$
Example 1.10

Show that the equations $2x + y = 5$, $4x + 2y = 10$ are consistent and solve them.

Solution:

The matrix equation corresponding to the system is

$$A \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 5 \\ 10 \end{bmatrix}$$

<table>
<thead>
<tr>
<th>Matrix A</th>
<th>Augmented matrix $[A,B]$</th>
<th>Elementary Transformation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\begin{bmatrix} 2 & 1 \ 4 & 2 \end{bmatrix}$</td>
<td>$\begin{bmatrix} 2 & 1 & 5 \ 4 & 2 & 10 \end{bmatrix}$</td>
<td>$R_2 \rightarrow R_2 - 2R_1$</td>
</tr>
<tr>
<td>$\sim \begin{bmatrix} 2 & 1 \ 0 & 0 \end{bmatrix}$</td>
<td>$\sim \begin{bmatrix} 2 & 1 & 5 \ 0 & 0 & 0 \end{bmatrix}$</td>
<td>$\rho(A) = 1$, $\rho([A,B]) = 1$</td>
</tr>
</tbody>
</table>

$\rho(A) = \rho([A,B]) = 1 < \text{number of unknowns}$

Therefore, the given system is consistent and has infinitely many solutions.

Now, the given system is transformed into the matrix equation.

$$\begin{bmatrix} 2 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 5 \\ 0 \end{bmatrix}$$

$\Rightarrow 2x + y = 5$

Let us take $y = k, k \in R$

$\Rightarrow 2x + k = 5$

$$x = \frac{1}{2}(5 - k)$$

Thus by giving different values for k, we get different solution. Hence the system has infinite number of solutions.

Example 1.11

Show that the equations $3x - 2y = 6$, $6x - 4y = 10$ are inconsistent.
Solution:

The matrix equation corresponding to the given system is

\[
\begin{pmatrix}
3 & -2 \\
6 & -4
\end{pmatrix}
\begin{pmatrix}
x \\
y
\end{pmatrix}
=
\begin{pmatrix}
6 \\
10
\end{pmatrix}
\]

\[AX = B\]

<table>
<thead>
<tr>
<th>Matrix A</th>
<th>Augmented matrix [A,B]</th>
<th>Elementary Transformation</th>
</tr>
</thead>
</table>
| \[
\begin{pmatrix}
3 & -2 \\
6 & -4
\end{pmatrix}
\] | \[
\begin{pmatrix}
3 & -2 & 6 \\
6 & -4 & 10
\end{pmatrix}
\] | \[R_2 \rightarrow R_2 - 2R_1\] |
| \[\sim \begin{pmatrix}
3 & -2 \\
0 & 0
\end{pmatrix}\] | \[\sim \begin{pmatrix}
3 & -2 & 6 \\
0 & 0 & -2
\end{pmatrix}\] | \[\rho(A)=1, \quad \rho([A,B])=2\] |

\[\therefore \rho([A,B])=2, \quad \rho(A)=1\]

\[\rho(A) \neq \rho([A,B])\]

\[\therefore \text{The given system is inconsistent and has no solution.}\]

Example 1.12

Show that the equations \(2x + y + z = 5, x + y + z = 4, x - y + 2z = 1\) are consistent and hence solve them.

Solution:

The matrix equation corresponding to the given system is

\[
\begin{pmatrix}
2 & 1 & 1 \\
1 & 1 & 1 \\
1 & -1 & 2
\end{pmatrix}
\begin{pmatrix}
x \\
y \\
z
\end{pmatrix}
=
\begin{pmatrix}
5 \\
4 \\
1
\end{pmatrix}
\]

\[A \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 5 \\ 4 \\ 1 \end{pmatrix}\]

<table>
<thead>
<tr>
<th>Augmented matrix [A,B]</th>
<th>Elementary Transformation</th>
</tr>
</thead>
</table>
| \[
\begin{pmatrix}
2 & 1 & 1 & 5 \\
1 & 1 & 1 & 4 \\
1 & -1 & 2 & 1
\end{pmatrix}
\] | \[R_1 \leftrightarrow R_2\] |
Obviously the last equivalent matrix is in the echelon form. It has three non-zero rows.

\[\rho(A) = \rho([A, B]) = 3 \]

Number of unknowns.

The given system is consistent and has unique solution.

To find the solution, let us rewrite the above echelon form into the matrix form.

\[
\begin{pmatrix}
1 & 1 & 1 \\
0 & -1 & -1 \\
0 & 0 & 3
\end{pmatrix}
\begin{pmatrix}
x \\
y \\
z
\end{pmatrix}
= \begin{pmatrix}
4 \\
-3 \\
3
\end{pmatrix}
\]

\(x + y + z = 4 \)
(1)
\(y + z = 3 \)
(2)
\(3z = 3 \)
(3)
(3) \Rightarrow z = 1
(2) \Rightarrow y = 3 - z = 2
(1) \Rightarrow x = 4 - y - z
\[x = 1 \]
\[y = 2 \]
\[z = 1 \]
\[\therefore x = 1, \quad y = 2, \quad z = 1 \]

Example 1.13

Show that the equations \(x + y + z = 6, \ x + 2y + 3z = 14, \ x + 4y + 7z = 30 \) are consistent and solve them.

Solution:

The matrix equation corresponding to the given system is

\[
\begin{pmatrix}
1 & 1 & 1 \\
1 & 2 & 3 \\
1 & 4 & 7
\end{pmatrix}
\begin{pmatrix}
x \\
y \\
z
\end{pmatrix}
= \begin{pmatrix}
6 \\
14 \\
30
\end{pmatrix}
\]

\(A \ X = B \)
Augmented matrix \([A,B]\)
\[
\begin{pmatrix}
1 & 1 & 1 & 6 \\
1 & 2 & 3 & 14 \\
1 & 4 & 7 & 30 \\
\end{pmatrix}
\]

Elementary Transformation
\[
\begin{align*}
\sim & \quad \begin{pmatrix}
1 & 1 & 1 & 6 \\
0 & 1 & 2 & 8 \\
0 & 2 & 4 & 16 \\
\end{pmatrix} \\
\to & \quad R_2 \rightarrow R_2 - R_1 \\
\to & \quad R_3 \rightarrow R_3 - R_2 \\
\sim & \quad \begin{pmatrix}
1 & 1 & 1 & 6 \\
0 & 1 & 2 & 8 \\
0 & 0 & 0 & 0 \\
\end{pmatrix} \\
\to & \quad R_3 \rightarrow R_3 - 2R_2 \\
\end{align*}
\]

\(\rho(A) = 2, \rho([A,B]) = 2\)

Obviously the last equivalent matrix is in the echelon form. It has two non-zero rows.

\[
\therefore \quad \rho([A,B]) = 2, \quad \rho(A) = 2
\]

\[\rho(A) = \rho([A,B]) = 2 < \text{Number of unknowns.}\]

The given system is consistent and has infinitely many solutions.

The given system is equivalent to the matrix equation,

\[
\begin{pmatrix}
1 & 1 & 1 \\
0 & 1 & 2 \\
0 & 0 & 0 \\
\end{pmatrix}
\begin{pmatrix}
x \\
y \\
z \\
\end{pmatrix}
=
\begin{pmatrix}
6 \\
8 \\
0 \\
\end{pmatrix}
\]

\[x + y + z = 6 \quad \text{(1)}\]
\[y + 2z = 8 \quad \text{(2)}\]

(2) \(\Rightarrow\) \(y = 8 - 2z,\)

(1) \(\Rightarrow\) \(x = 6 - y - z = 6 - (8 - 2z) - z = z - 2\)

Let us take \(z = k, k \in R,\) we get \(x = k - 2, y = 8 - 2k,\) Thus by giving different values for \(k\) we get different solutions. Hence the given system has infinitely many solutions.

Example 1.14

Show that the equations \(x - 4y + 7z = 14, 3x + 8y - 2z = 13, 7x - 8y + 26z = 5\) are inconsistent.
Solution:
The matrix equation corresponding to the given system is

\[
\begin{pmatrix}
1 & -4 & 7 \\
3 & 8 & -2 \\
7 & -8 & 26
\end{pmatrix}
\begin{pmatrix}
x \\
y \\
z
\end{pmatrix}
=
\begin{pmatrix}
14 \\
13 \\
5
\end{pmatrix}
\]

\[A \quad X = \quad B\]

<table>
<thead>
<tr>
<th>Augmented matrix ([A,B])</th>
<th>Elementary Transformation</th>
</tr>
</thead>
</table>
| \[
\begin{pmatrix}
1 & -4 & 7 & 14 \\
3 & 8 & -2 & 13 \\
7 & -8 & 26 & 5
\end{pmatrix}
\] | \[R_2 \rightarrow R_2 - 3R_1\] |
| \[
\begin{pmatrix}
1 & -4 & 7 & 14 \\
0 & 20 & -23 & -29 \\
0 & 20 & -23 & -93
\end{pmatrix}
\] | \[R_3 \rightarrow R_3 - 7R_1\] |
| \[
\begin{pmatrix}
1 & -4 & 7 & 14 \\
0 & 20 & -23 & -29 \\
0 & 0 & 0 & 64
\end{pmatrix}
\] | \[R_3 \rightarrow R_3 - R_2\] |

\[\rho (A) = 2, \quad \rho ([A,B]) = 3\]

The last equivalent matrix is in the echelon form. \([A, B]\) has 3 non-zero rows and \([A]\) has 2 non-zero rows.

\[\therefore \quad \rho ([A, B]) = 3, \quad \rho (A) = 2\]

\[\rho (A) \neq \rho ([A, B])\]

The system is inconsistent and has no solution.

Example 1.15

Find \(k\), if the equations \(x + 2y - 3z = -2, 3x - y - 2z = 1, 2x + 3y - 5z = k\) are consistent.

Solution:
The matrix equation corresponding to the given system is

\[
\begin{pmatrix}
1 & 2 & -3 \\
3 & -1 & -2 \\
2 & 3 & -5
\end{pmatrix}
\begin{pmatrix}
x \\
y \\
z
\end{pmatrix}
=
\begin{pmatrix}
-2 \\
1 \\
k
\end{pmatrix}
\]

\[A \quad X = \quad B\]
Applications of Matrices and Determinants

Augmented matrix \([A, B]\]

<table>
<thead>
<tr>
<th>Elementary Transformation</th>
</tr>
</thead>
</table>
| \[
\begin{bmatrix}
1 & 2 & -3 & -2 \\
3 & -1 & -2 & 1 \\
2 & 3 & -5 & k \\
\end{bmatrix}
\] |
| \[
\begin{bmatrix}
1 & 2 & -3 & -2 \\
0 & -7 & 7 & 7 \\
k & 1 & 4+k \\
\end{bmatrix}
\] |
| \[
\begin{bmatrix}
1 & 2 & -3 & -2 \\
0 & -7 & 7 & 7 \\
0 & 0 & 21+7k & \\
\end{bmatrix}
\] |
| \[
R_2 \rightarrow R_2 - 3R_1 \\
R_3 \rightarrow R_3 - 2R_1 \\
R_3 \rightarrow 7R_3 - R_2 \\
\] |

\[\rho(A) = 2, \quad \rho([A, B]) = 2 \text{ or } 3\]

For the equations to be consistent, \(\rho([A, B]) = \rho(A) = 2\)

\[
\therefore 21 + 7k = 0 \\
7k = -21 \\
k = -3
\]

Example 1.16

Find \(k\), if the equations \(x + y + z = 7, x + 2y + 3z = 18, y + kz = 6\) are inconsistent.

Solution:

The matrix equation corresponding to the given system is

\[
\begin{bmatrix}
1 & 1 & 1 \\
1 & 2 & 3 \\
0 & 1 & k \\
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
\end{bmatrix}
= \begin{bmatrix}
7 \\
18 \\
6 \\
\end{bmatrix}
\]

<table>
<thead>
<tr>
<th>Augmented matrix ([A, B])</th>
<th>Elementary Transformation</th>
</tr>
</thead>
</table>
| \[
\begin{bmatrix}
1 & 1 & 1 & 7 \\
1 & 2 & 3 & 18 \\
0 & 1 & k & 6 \\
\end{bmatrix}
\] | \[
\begin{bmatrix}
1 & 1 & 1 & 7 \\
1 & 2 & 3 & 18 \\
0 & 1 & k & 6 \\
\end{bmatrix}
\] |
For the equations to be inconsistent

$$\rho \left(\left[A, B \right] \right) \neq \rho \left(A \right)$$

It is possible if $$k = 2$$.

$$\therefore k = 2$$

Example 1.17

Investigate for what values of ‘a’ and ‘b’ the following system of equations

\[
x + y + z = 6, \quad x + 2y + 3z = 10, \quad x + 2y + az = b
\]

have

(i) no solution (ii) a unique solution (iii) an infinite number of solutions.

Solution:

The matrix equation corresponding to the given system is

\[
\begin{pmatrix}
1 & 1 & 1 & 6 \\
1 & 2 & 3 & 10 \\
1 & 2 & a & b
\end{pmatrix}
\begin{pmatrix}
x \\
y \\
z
\end{pmatrix}
=
\begin{pmatrix}
6 \\
10 \\
b
\end{pmatrix}
\]

<table>
<thead>
<tr>
<th>Augmented matrix ([A,B])</th>
<th>Elementary Transformation</th>
</tr>
</thead>
</table>
| \[
\begin{pmatrix}
1 & 1 & 1 & 6 \\
1 & 2 & 3 & 10 \\
1 & 2 & a & b
\end{pmatrix}
\] | \[
R_2 \rightarrow R_2 - R_1, \quad R_3 \rightarrow R_3 - R_1
\] |
| \[
\begin{pmatrix}
1 & 1 & 1 & 6 \\
0 & 1 & 2 & 4 \\
0 & a-1 & b-6
\end{pmatrix}
\] | \[
R_3 \rightarrow R_3 - R_1
\] |
| \[
\begin{pmatrix}
1 & 1 & 1 & 6 \\
0 & 1 & 2 & 4 \\
0 & 0 & a-3 & b-10
\end{pmatrix}
\] | \[
R_3 \rightarrow R_3 - R_2
\] |
Case (i) For no solution:

The system possesses no solution only when \(\rho(A) \neq \rho([A, B]) \) which is possible only when \(a - 3 = 0 \) and \(b - 10 \neq 0 \)

Hence for \(a = 3, \ b \neq 10 \), the system possesses no solution.

Case (ii) For a unique solution:

The system possesses a unique solution only when \(\rho(A) = \rho([A, B]) = \) number of unknowns.

i.e when \(\rho(A) = \rho([A, B]) = 3 \)

Which is possible only when \(a - 3 \neq 0 \) and \(b \) may be any real number as we can observe.

Hence for \(a \neq 3 \) and \(b \in R \), the system possesses a unique solution.

Case (iii) For an infinite number of solutions:

The system possesses an infinite number of solutions only when

\[\rho(A) = \rho([A, B]) < \text{number of unknowns} \]

i.e when \(\rho(A) = \rho([A, B]) = 2 < 3 \) (number of unknowns) which is possible only when \(a - 3 = 0, \ b - 10 = 0 \)

Hence for \(a = 3, \ b = 10 \), the system possesses infinite number of solutions.

Example 1.18

The total number of units produced \((P)\) is a linear function of amount of over times in labour (in hours) \((l)\), amount of additional machine time \((m)\) and fixed finishing time \((a)\)

i.e, \(P = a + bl + cm \)

From the data given below, find the values of constants \(a, b \) and \(c \)

<table>
<thead>
<tr>
<th>Day</th>
<th>Production (in Units P)</th>
<th>Labour (in Hrs l)</th>
<th>Additional Machine Time (in Hrs m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday</td>
<td>6,950</td>
<td>40</td>
<td>10</td>
</tr>
<tr>
<td>Tuesday</td>
<td>6,725</td>
<td>35</td>
<td>9</td>
</tr>
<tr>
<td>Wednesday</td>
<td>7,100</td>
<td>40</td>
<td>12</td>
</tr>
</tbody>
</table>
Estimate the production when overtime in labour is 50 hrs and additional machine time is 15 hrs.

Solution:

We have, \(P = a + bl + cm \)

Putting above values we have

\[
\begin{align*}
6,950 &= a + 40b + 10c \\
6,725 &= a + 35b + 9c \\
7,100 &= a + 40b + 12c
\end{align*}
\]

The Matrix equation corresponding to the given system is

\[
\begin{bmatrix}
1 & 40 & 10 \\
1 & 35 & 9 \\
1 & 40 & 12
\end{bmatrix}
\begin{bmatrix}
a \\
b \\
c
\end{bmatrix} =
\begin{bmatrix}
6950 \\
6725 \\
7100
\end{bmatrix}
\]

The Augmented matrix \([A,B]\) is given by

\[
\begin{bmatrix}
1 & 40 & 10 & | & 6950 \\
1 & 35 & 9 & | & 6725 \\
1 & 40 & 12 & | & 7100
\end{bmatrix}
\]

\[
\sim
\begin{bmatrix}
1 & 40 & 10 & | & 6950 \\
0 & -5 & -1 & | & -225 \\
0 & 0 & 2 & | & 150
\end{bmatrix}
\]

Using Elementary Transformation

\[
R_2 \rightarrow R_2 - R_1 \quad R_3 \rightarrow R_3 - R_1
\]

\[
\rho(A) = 3, \rho([A,B]) = 3
\]

\[
\begin{align*}
\begin{bmatrix}
1 & 40 & 10 & | & 6950 \\
0 & -5 & -1 & | & -225 \\
0 & 0 & 2 & | & 150
\end{bmatrix}
\end{align*}
\]

\[
\begin{align*}
a + 40b + 10c &= 6950 \quad (1) \\
-5b - c &= -225 \quad (2) \\
2c &= 150 \quad (3)
\end{align*}
\]

\[
\begin{align*}
c &= 75
\end{align*}
\]
Now, \((2) \Rightarrow -5b - 75 = -225 \)
\[
\begin{align*}
b &= 30
\end{align*}
\]
and \((1) \Rightarrow a + 1200 + 750 = 6950 \)
\[
a = 5000
\]
\[
a = 5000, \ b = 30, \ c = 75
\]
∴ The production equation is \(P = 5000 + 30l + 75m \)
∴ \(P \) at \(l = 50, \ m = 15 \) = \(5000 + 30(50) + 75(15) \) = 7625 units.
∴ The production = 7,625 units.

Exercise 1.1

1. Find the rank of each of the following matrices
 i) \[
 \begin{pmatrix}
 5 & 6 \\
 7 & 8
 \end{pmatrix}
 \]
 ii) \[
 \begin{pmatrix}
 1 & -1 \\
 3 & -6
 \end{pmatrix}
 \]
 iii) \[
 \begin{pmatrix}
 1 & 4 \\
 2 & 8
 \end{pmatrix}
 \]
 iv) \[
 \begin{pmatrix}
 2 & -1 & 1 \\
 3 & 1 & -5 \\
 1 & 1 & 1
 \end{pmatrix}
 \]
 v) \[
 \begin{pmatrix}
 -1 & 2 & -2 \\
 4 & -3 & 4 \\
 -2 & 4 & -4
 \end{pmatrix}
 \]
 vi) \[
 \begin{pmatrix}
 1 & 2 & -1 & 3 \\
 2 & 4 & 1 & -2 \\
 3 & 6 & 3 & -7
 \end{pmatrix}
 \]
 vii) \[
 \begin{pmatrix}
 3 & 1 & -5 & -1 \\
 1 & -2 & 1 & -5 \\
 1 & 5 & -7 & 2
 \end{pmatrix}
 \]
 viii) \[
 \begin{pmatrix}
 1 & -2 & 3 & 4 \\
 -2 & 4 & -1 & -3 \\
 -1 & 2 & 7 & 6
 \end{pmatrix}
 \]

2. If \(A = \begin{pmatrix}
1 & 1 & -1 \\
2 & -3 & 4 \\
3 & -2 & 3
\end{pmatrix} \) and \(B = \begin{pmatrix}
1 & -2 & 3 \\
-2 & 4 & -6 \\
5 & 1 & -1
\end{pmatrix} \), then find the rank of \(AB \) and the rank of \(BA \).

3. Solve the following system of equations by rank method
 \[
 x + y + z = 9, \ 2x + 5y + 7z = 52, \ 2x - y - z = 0
 \]

4. Show that the equations \(5x + 3y + 7z = 4, \ 3x + 26y + 2z = 9, \ 7x + 2y + 10z = 5 \) are consistent and solve them by rank method.

5. Show that the following system of equations have unique solution:
 \[
 x + y + z = 3, \ x + 2y + 3z = 4, \ x + 4y + 9z = 6
 \] by rank method.
6. For what values of the parameter \(\lambda \), will the following equations fail to have unique solution:
\[
3x - y + \lambda z = 1,
2x + y + z = 2,
x + 2y - \lambda z = -1
\]
by rank method.

7. The price of three commodities \(X, Y \) and \(Z \) are \(x, y \) and \(z \) respectively Mr.Anand purchases 6 units of \(Z \) and sells 2 units of \(X \) and 3 units of \(Y \). Mr.Amar purchases a unit of \(Y \) and sells 3 units of \(X \) and 2 units of \(Z \). Mr.Amit purchases a unit of \(X \) and sells 3 units of \(Y \) and a unit of \(Z \). In the process they earn ₹5,000/-, ₹2,000/- and ₹5,500/- respectively Find the prices per unit of three commodities by rank method.

8. An amount of ₹5,000/- is to be deposited in three different bonds bearing 6%, 7% and 8% per year respectively. Total annual income is ₹358/-. If the income from first two investments is ₹70/- more than the income from the third, then find the amount of investment in each bond by rank method.

1.2 Cramer’s Rule

Gabriel Cramer, a Swiss mathematician born in the city Geneva in 31 July 1704. He edited the works of the two elder Bernoulli’s, and wrote on the physical cause of the spheroidal shape of the planets and the motion of their apsides (1730), and on Newton’s treatment of cubic curves (1746).

In 1750 he published Cramer’s Rule, giving a general formula for the solution of certain linear system of \(n \) equations in \(n \) unknowns having a unique solution in terms of determinants. Advantages of Cramer’s rule is that we can find the value of \(x, y \) or \(z \) without knowing any of the other values of \(x, y \) or \(z \). Cramer’s rule is applicable only when \(\Delta \neq 0 \) (\(\Delta \) is the determinant value of the coefficient matrix) for unique solution.

Theorem (without proof) Cramer’s Rule:

Consider,

\[
\begin{bmatrix}
 a_{11} & a_{12} & \ldots & a_{1n} \\
 a_{21} & a_{22} & \ldots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{n1} & a_{n2} & \ldots & a_{nn}
\end{bmatrix}
\begin{bmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_n
\end{bmatrix}
=
\begin{bmatrix}
 b_1 \\
 b_2 \\
 \vdots \\
 b_n
\end{bmatrix}
\]

If \(AX = B \) is a system of \(n \) linear equations in \('n' \) unknowns such that \(\det(A) \neq 0 \), then the system has a unique solution.

This solution is,

\[
x_1 = \frac{\det(A_1)}{\det(A)}, \quad x_2 = \frac{\det(A_2)}{\det(A)}, \ldots, \quad x_n = \frac{\det(A_n)}{\det(A)}
\]

where \(A_j \) is the matrix obtained by replacing the entries in the \(j \)th column of \(A \) by the entries in the matrix.
1.2.1 Non Homogeneous linear equations upto three variables.

(a) Consider the system of two linear equations with two unknowns.

\[a_1x + b_1y = d_1 \]
\[a_2x + b_2y = d_2 \]

Let \[\Delta = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} \]
\[\Delta_x = \begin{vmatrix} d_1 & b_1 \\ d_2 & b_2 \end{vmatrix} \]
\[\Delta_y = \begin{vmatrix} a_1 & d_1 \\ a_2 & d_2 \end{vmatrix} \]

The solution of unknown by Cramer's rule is

\[x = \frac{\Delta_x}{\Delta}, \quad y = \frac{\Delta_y}{\Delta} \quad \text{provided} \quad \Delta \neq 0 \]

(b) Consider the system of three linear equations with three unknowns

\[a_1x + b_1y + c_1z = d_1 \]
\[a_2x + b_2y + c_2z = d_2 \]
\[a_3x + b_3y + c_3z = d_3 \]

Let \[\Delta = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} \neq 0 \]
\[\Delta_x = \begin{vmatrix} d_1 & b_1 & c_1 \\ d_2 & b_2 & c_2 \\ d_3 & b_3 & c_3 \end{vmatrix} \]
\[\Delta_y = \begin{vmatrix} a_1 & d_1 & c_1 \\ a_2 & d_2 & c_2 \\ a_3 & d_3 & c_3 \end{vmatrix} \]
\[\Delta_z = \begin{vmatrix} a_1 & b_1 & d_1 \\ a_2 & b_2 & d_2 \\ a_3 & b_3 & d_3 \end{vmatrix} \]

Solution of unknown by Cramer Rule is

\[x = \frac{\Delta_x}{\Delta}, \quad y = \frac{\Delta_y}{\Delta}, z = \frac{\Delta_z}{\Delta} \]

Example 1.19

Solve the equations \(2x + 3y = 7, 3x + 5y = 9\) by Cramer's rule.

Solution:

The equations are

\[2x + 3y = 7 \]
\[3x + 5y = 9 \]
Here \(\Delta = \begin{vmatrix} 2 & 3 \\ 3 & 5 \end{vmatrix} = 1 \neq 0 \)

\[\therefore \text{ we can apply Cramer's Rule} \]

Now \(\Delta_x = \begin{vmatrix} 7 & 3 \\ 9 & 5 \end{vmatrix} = 8 \qquad \Delta_y = \begin{vmatrix} 2 & 7 \\ 3 & 9 \end{vmatrix} = -3 \)

\[\therefore \text{ By Cramer's rule} \]

\[x = \frac{\Delta_x}{\Delta} = \frac{8}{1} = 8 \quad y = \frac{\Delta_y}{\Delta} = \frac{-3}{1} = -3 \]

\[\therefore \text{ Solution is } x = 8, y = -3 \]

Example 1.20

The following table represents the number of shares of two companies A and B during the month of January and February and it also gives the amount in rupees invested by Ravi during these two months for the purchase of shares of two companies. Find the price per share of A and B purchased during both the months

<table>
<thead>
<tr>
<th>Months</th>
<th>Number of Shares of the company</th>
<th>Amount invested by Ravi (in ₹)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>January</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>February</td>
<td>9</td>
<td>12</td>
</tr>
</tbody>
</table>

Solution:

Let the price of one share of A be \(x \)

Let the price of one share of B be \(y \)

\[\therefore \text{ By given data, we get the following equations} \]

\[10x + 5y = 125 \]

\[9x + 12y = 150 \]

\[\Delta = \begin{vmatrix} 10 & 5 \\ 9 & 12 \end{vmatrix} = 75 \neq 0 \quad \Delta_x = \begin{vmatrix} 125 & 5 \\ 150 & 12 \end{vmatrix} = 750 \quad \Delta_y = \begin{vmatrix} 10 & 125 \\ 9 & 150 \end{vmatrix} = 375 \]

\[\therefore \text{ By Cramer's rule} \]

\[x = \frac{\Delta_x}{\Delta} = \frac{750}{75} = 10 \quad y = \frac{\Delta_y}{\Delta} = \frac{375}{75} = 5 \]

The price of the share A is ₹10 and the price of the share B is ₹5.
Example 1.21

The total cost of 11 pencils and 3 erasers is ₹ 64 and the total cost of 8 pencils and 3 erasers is ₹ 49. Find the cost of each pencil and each eraser by Cramer’s rule.

Solution:

Let ‘x’ be the cost of a pencil
Let ‘y’ be the cost of an eraser

\[
\begin{align*}
11x + 3y &= 64 \\
8x + 3y &= 49
\end{align*}
\]

\[
\Delta = \begin{vmatrix}
11 & 3 \\
8 & 3
\end{vmatrix} = 9 \neq 0. \text{ It has unique solution.}
\]

\[
\Delta_x = \begin{vmatrix}
64 & 3 \\
49 & 3
\end{vmatrix} = 45 \quad \Delta_y = \begin{vmatrix}
11 & 64 \\
8 & 49
\end{vmatrix} = 27
\]

∴ By Cramer’s rule

\[
x = \frac{\Delta_x}{\Delta} = \frac{45}{9} = 5
\]

\[
y = \frac{\Delta_y}{\Delta} = \frac{27}{9} = 3
\]

∴ The cost of a pencil is ₹ 5 and the cost of an eraser is ₹ 3.

Example 1.22

Solve by Cramer’s rule \(x + y + z = 4 \), \(2x - y + 3z = 1 \), \(3x + 2y - z = 1 \)

Solution:

Here \[\Delta = \begin{vmatrix}
1 & 1 & 1 \\
2 & -1 & 3 \\
3 & 2 & -1
\end{vmatrix} = 13 \neq 0\]

∴ We can apply Cramer’s Rule and the system is consistent and it has unique solution.

\[
\Delta_x = \begin{vmatrix}
4 & 1 & 1 \\
1 & -1 & 3 \\
1 & 2 & -1
\end{vmatrix} = -13 \quad \Delta_y = \begin{vmatrix}
1 & 4 & 1 \\
2 & 1 & 3 \\
3 & 1 & -1
\end{vmatrix} = 39 \quad \Delta_z = \begin{vmatrix}
1 & 1 & 4 \\
2 & -1 & 1 \\
3 & 2 & 1
\end{vmatrix} = 26
\]

∴ By Cramer’s rule

\[
x = \frac{\Delta_x}{\Delta} = \frac{-13}{13} = -1 \quad y = \frac{\Delta_y}{\Delta} = \frac{39}{13} = 3
\]

\[
z = \frac{\Delta_z}{\Delta} = \frac{26}{13} = 2
\]

∴ The solution is \((x, y, z) = (-1, 3, 2)\)
Example 1.23

Solution:

Let 'x' be the cost of a Business Mathematics book.

Let 'y' be the cost of an Accountancy book.

Let 'z' be the cost of a Commerce book.

∴ \[3x + 2y + z = 840\]
\[2x + y + z = 570\]
\[x + y + 2z = 630\]

Here \[\Delta = \begin{vmatrix} 3 & 2 & 1 \\ 2 & 1 & 1 \\ 1 & 1 & 2 \end{vmatrix} = -2 \neq 0\]
\[\Delta_x = \begin{vmatrix} 840 & 2 & 1 \\ 570 & 1 & 1 \\ 630 & 1 & 2 \end{vmatrix} = -240\]
\[\Delta_y = \begin{vmatrix} 3 & 840 & 1 \\ 2 & 570 & 1 \\ 1 & 630 & 2 \end{vmatrix} = -300\]
\[\Delta_z = \begin{vmatrix} 3 & 2 & 840 \\ 2 & 1 & 570 \\ 1 & 1 & 630 \end{vmatrix} = -360\]

∴ By Cramer’s rule
\[x = \frac{\Delta_x}{\Delta} = \frac{-240}{-2} = 120\]
\[y = \frac{\Delta_y}{\Delta} = \frac{-300}{-2} = 150\]
\[z = \frac{\Delta_z}{\Delta} = \frac{-360}{-2} = 180\]

∴ The cost of a Business Mathematics book is ₹120,
the cost of an Accountancy book is ₹150 and
the cost of a Commerce book is ₹180.

Example 1.24

An automobile company uses three types of Steel \(S_1\), \(S_2\) and \(S_3\) for providing three different types of Cars \(C_1\), \(C_2\) and \(C_3\). Steel requirement \(R\) (in tonnes) for each type of car and total available steel of all the three types are summarized in the following table.

<table>
<thead>
<tr>
<th>Types of Steel</th>
<th>Types of Car</th>
<th>Total Steel available</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S_1)</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>(S_2)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(S_3)</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
Determine the number of Cars of each type which can be produced by Cramer’s rule.

Solution:

Let ‘x’ be the number of cars of type C_1
Let ‘y’ be the number of cars of type C_2
Let ‘z’ be the number of cars of type C_3

\[
\begin{align*}
3x + 2y + 4z &= 28 \\
x + y + 2z &= 13 \\
2x + 2y + z &= 14
\end{align*}
\]

Here \(\Delta = \begin{vmatrix} 3 & 2 & 4 \\ 1 & 1 & 2 \\ 2 & 2 & 1 \end{vmatrix} = -3 \neq 0 \)

\(\Delta_x = \begin{vmatrix} 28 & 2 & 4 \\ 13 & 1 & 2 \\ 14 & 2 & 1 \end{vmatrix} = -6 \)

\(\Delta_y = \begin{vmatrix} 3 & 28 & 4 \\ 1 & 13 & 2 \\ 2 & 14 & 1 \end{vmatrix} = -9 \)

\(\Delta_z = \begin{vmatrix} 3 & 2 & 28 \\ 1 & 1 & 13 \\ 2 & 2 & 14 \end{vmatrix} = -12 \)

∴ By Cramer’s rule

\[
\begin{align*}
x &= \frac{\Delta_x}{\Delta} = \frac{-6}{-3} = 2 \\
y &= \frac{\Delta_y}{\Delta} = \frac{-9}{-3} = 3 \\
z &= \frac{\Delta_z}{\Delta} = \frac{-12}{-3} = 4
\end{align*}
\]

∴ The number of cars of each type which can be produced are 2, 3 and 4.

Exercise 1.2

1. Solve the following equations by using Cramer’s rule
 (i) \(2x + 3y = 7; \quad 3x + 5y = 9 \)
 (ii) \(5x + 3y = 17; \quad 3x + 7y = 31 \)
 (iii) \(2x + y - z = 3, \quad x + y + z = 1, \quad x - 2y - 3z = 4 \)
 (iv) \(x + y + z = 6, \quad 2x + 3y - z = 5, \quad 6x - 2y - 3z = -7 \)
 (v) \(x + 4y + 3z = 2, \quad 2x - 6y + 6z = -3, \quad 5x - 2y + 3z = -5 \)

2. A commodity was produced by using 3 units of labour and 2 units of capital, the total cost is ₹62. If the commodity had been produced by using 4 units of labour and one unit of capital, the cost is ₹56. What is the cost per unit of labour and capital? (Use determinant method).
3. A total of ₹8,600 was invested in two accounts. One account earned $4\frac{3}{4}$% annual interest and the other earned $6\frac{1}{2}$% annual interest. If the total interest for one year was ₹431.25, how much was invested in each account? (Use determinant method).

4. At marina two types of games viz., Horse riding and Quad Bikes riding are available on hourly rent. Keren and Benita spent ₹780 and ₹560 during the month of May.

<table>
<thead>
<tr>
<th>Name</th>
<th>Number of hours</th>
<th>Horse Riding</th>
<th>Quad Bike Riding</th>
<th>Total amount spent (in ₹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keren</td>
<td>3</td>
<td>4</td>
<td></td>
<td>780</td>
</tr>
<tr>
<td>Benita</td>
<td>2</td>
<td>3</td>
<td></td>
<td>560</td>
</tr>
</tbody>
</table>

Find the hourly charges for the two games (rides). (Use determinant method).

5. In a market survey three commodities A, B and C were considered. In finding out the index number some fixed weights were assigned to the three varieties in each of the commodities. The table below provides the information regarding the consumption of three commodities according to the three varieties and also the total weight received by the commodity.

<table>
<thead>
<tr>
<th>Commodity</th>
<th>Variety</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>Total weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>21</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>27</td>
</tr>
</tbody>
</table>

Find the weights assigned to the three varieties by using Cramer’s Rule.

6. A total of ₹8,500 was invested in three interest earning accounts. The interest rates were 2%, 3% and 6% if the total simple interest for one year was ₹380 and the amount invested at 6% was equal to the sum of the amounts in the other two accounts, then how much was invested in each account? (use Cramer’s rule).

1.3 Transition Probability Matrices

1.3.1 Forecasting the succeeding state when the initial market share is given

One stage Transition Probability

The Occurrence of an event at a specified point in time, put the system in state S_n; if after the passage of one unit of time, another event occurs, that is the system moved from the state S_n to S_{n+1}. This movement is related to a probability distribution, there is a probability associated with each (move) transition from event S_n to S_{n+1}. This probability distribution is called one stage transition probability.
Transition Matrix

The transition Probabilities P_{jk} satisfy $P_{jk} > 0$, $\sum_k P_{jk} = 1$ for all j

These probabilities may be written in the matrix form

$$P = \begin{pmatrix} P_{11} & P_{12} & P_{13} & \ldots \\ P_{21} & P_{22} & P_{23} & \ldots \\ \vdots & \vdots & \vdots & \ddots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

This is called the transition probability matrix

Example 1.25

Consider the matrix of transition probabilities of a product available in the market in two brands A and B.

\[
\begin{pmatrix} A & B \\ A & 0.9 & 0.1 \\ B & 0.3 & 0.7 \end{pmatrix}
\]

Determine the market share of each brand in equilibrium position.

Solution:

Transition probability matrix

\[
T = \begin{pmatrix} A & B \\ 0.9 & 0.1 \\ 0.3 & 0.7 \end{pmatrix}
\]

At equilibrium, $T = \begin{pmatrix} A & B \\ A & B \end{pmatrix}$ where $A + B = 1$

\[
\begin{pmatrix} A & B \\ 0.9 & 0.1 \\ 0.3 & 0.7 \end{pmatrix} = \begin{pmatrix} A & B \\ A & B \end{pmatrix}
\]

\[
0.9A + 0.3B = A
\]

\[
0.9A + 0.3(1 - A) = A
\]

\[
0.9A - 0.3A + 0.3 = A
\]

\[
0.6A + 0.3 = A
\]

\[
0.4A = 0.3
\]

\[
A = \frac{0.3}{0.4} = \frac{3}{4}
\]
\[B = 1 - \frac{3}{4} = \frac{1}{4} \]

Hence the market share of brand A is 75% and the market share of brand B is 25%.

Example 1.26

Parithi is either sad (S) or happy (H) each day. If he is happy in one day, he is sad on the next day by four times out of five. If he is sad on one day, he is happy on the next day by two times out of three. Over a long run, what are the chances that Parithi is happy on any given day?

Solution:

The transition probability matrix is

\[
T = \begin{pmatrix}
\frac{4}{5} & \frac{1}{5} \\
\frac{2}{3} & \frac{1}{3}
\end{pmatrix}
\]

At equilibrium, \((S \ H) \begin{pmatrix}
\frac{4}{5} & \frac{1}{5} \\
\frac{2}{3} & \frac{1}{3}
\end{pmatrix} = (S \ H) \) where \(S + H = 1 \)

\[
\frac{4}{5}S + \frac{2}{3}H = S
\]

\[
\frac{4}{5}S + \frac{2}{3}(1 - S) = S
\]

On solving this, we get \(S = \frac{10}{13} \) and \(H = \frac{3}{13} \).

In the long run, on a randomly selected day, his chances of being happy is \(\frac{10}{13} \).

Example 1.27

Akash bats according to the following traits. If he makes a hit (S), there is a 25% chance that he will make a hit his next time at bat. If he fails to hit (F), there is a 35% chance that he will make a hit his next time at bat. Find the transition probability matrix for the data and determine Akash’s long-range batting average.

Solution:

The Transition probability matrix is

\[
T = \begin{pmatrix}
0.25 & 0.75 \\
0.35 & 0.65
\end{pmatrix}
\]

At equilibrium, \((S \ F) \begin{pmatrix}
0.25 & 0.75 \\
0.35 & 0.65
\end{pmatrix} = (S \ F) \) where \(S + F = 1 \)

\[
0.25 S + 0.35 F = S
\]

\[
0.25 S + 0.35 (1 - S) = S
\]
On solving this, we get \(\begin{align*} S &= \frac{0.35}{1.10} \\
\Rightarrow S &= 0.318 \text{ and } F = 0.682
\end{align*} \)

\(\therefore \) Akash’s batting average is 31.8%.

Example 1.28

80% of students who do maths work during one study period, will do the maths work at the next study period. 30% of students who do English work during one study period, will do the English work at the next study period.

Initially there were 60 students do maths work and 40 students do English work. Calculate,

(i) The transition probability matrix

(ii) The number of students who do maths work, English work for the next subsequent 2 study periods.

Solution

(i) Transition probability matrix

\[
T = \begin{pmatrix}
0.8 & 0.2 \\
0.7 & 0.3 \\
\end{pmatrix}
\]

After one study period,

\[
\begin{pmatrix}
60 \\
40 \\
\end{pmatrix}
\begin{pmatrix}
0.8 & 0.2 \\
0.7 & 0.3 \\
\end{pmatrix}
= \begin{pmatrix}
76 \\
24 \\
\end{pmatrix}
\]

So in the very next study period, there will be 76 students do maths work and 24 students do English work.

(ii) After two study periods,

\[
\begin{pmatrix}
60 \\
40 \\
\end{pmatrix}
\begin{pmatrix}
0.8 & 0.2 \\
0.7 & 0.3 \\
\end{pmatrix}
= \begin{pmatrix}
60.8 + 16.8 \\
15.2 + 7.2 \\
\end{pmatrix}
\]

\[
= \begin{pmatrix}
77.6 \\
22.4 \\
\end{pmatrix}
\]

After two study periods there will be 78 (approx) students do maths work and 22 (approx) students do English work.
Exercise 1.3

1. The subscription department of a magazine sends out a letter to a large mailing list inviting subscriptions for the magazine. Some of the people receiving this letter already subscribe to the magazine while others do not. From this mailing list, 45% of those who already subscribe will subscribe again while 30% of those who do not now subscribe will subscribe. On the last letter, it was found that 40% of those receiving it ordered a subscription. What percent of those receiving the current letter can be expected to order a subscription?

2. A new transit system has just gone into operation in Chennai. Of those who use the transit system this year, 30% will switch over to using metro train next year and 70% will continue to use the transit system. Of those who use metro train this year, 70% will continue to use metro train next year and 30% will switch over to the transit system. Suppose the population of Chennai city remains constant and that 60% of the commuters use the transit system and 40% of the commuters use metro train this year.

 (i) What percent of commuters will be using the transit system after one year?
 (ii) What percent of commuters will be using the transit system in the long run?

3. Two types of soaps A and B are in the market. Their present market shares are 15% for A and 85% for B. Of those who bought A the previous year, 65% continue to buy it again while 35% switch over to B. Of those who bought B the previous year, 55% buy it again and 45% switch over to A. Find their market shares after one year and when is the equilibrium reached?

4. Two products A and B currently share the market with shares 50% and 50% each respectively. Each week some brand switching takes place. Of those who bought A the previous week, 60% buy it again whereas 40% switch over to B. Of those who bought B the previous week, 80% buy it again whereas 20% switch over to A. Find their shares after one week and after two weeks. If the price war continues, when is the equilibrium reached?

Exercise 1.4

Choose the correct answer

1. If $A=(1 \ 2 \ 3)$, then the rank of AA^T is

 (a) 0 (b) 2 (c) 3 (d) 1
2. The rank of $m \times n$ matrix whose elements are unity is

 (a) 0 \hspace{1cm} (b) 1 \hspace{1cm} (c) m \hspace{1cm} (d) n

3. If $T = \begin{pmatrix} 0.4 & 0.6 \\ 0.2 & 0.8 \end{pmatrix}$ is a transition probability matrix, then at equilibrium A is equal to

 (a) $\frac{1}{4}$ \hspace{1cm} (b) $\frac{1}{5}$ \hspace{1cm} (c) $\frac{1}{6}$ \hspace{1cm} (d) $\frac{1}{8}$

4. If $A = \begin{pmatrix} 2 & 0 \\ 0 & 8 \end{pmatrix}$, then $\rho(A)$ is

 (a) 0 \hspace{1cm} (b) 1 \hspace{1cm} (c) 2 \hspace{1cm} (d) n

5. The rank of the matrix $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9 \end{pmatrix}$ is

 (a) 0 \hspace{1cm} (b) 1 \hspace{1cm} (c) 2 \hspace{1cm} (d) 3

6. The rank of the unit matrix of order n is

 (a) $n-1$ \hspace{1cm} (b) n \hspace{1cm} (c) $n+1$ \hspace{1cm} (d) n^2

7. If $\rho(A) = r$ then which of the following is correct?

 (a) all the minors of order r which does not vanish
 (b) A has at least one minor of order r which does not vanish
 (c) A has at least one $(r+1)$ order minor which vanishes
 (d) all $(r+1)$ and higher order minors should not vanish

8. If $A = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ then the rank of AA^T is

 (a) 0 \hspace{1cm} (b) 1 \hspace{1cm} (c) 2 \hspace{1cm} (d) 3

9. If the rank of the matrix $\begin{pmatrix} \lambda & -1 & 0 \\ 0 & \lambda & -1 \\ -1 & 0 & \lambda \end{pmatrix}$ is 2. Then λ is

 (a) 1 \hspace{1cm} (b) 2 \hspace{1cm} (c) 3 \hspace{1cm} (d) only real number
10. The rank of the diagonal matrix
\[
\begin{pmatrix}
1 & 2 \\
-3 & 0 \\
0 & 0 \\
\end{pmatrix}
\]
(a) 0 (b) 2 (c) 3 (d) 5

11. If \(T = \begin{pmatrix} A & B \\
0.7 & 0.3 \\
0.6 & x \\
\end{pmatrix} \) is a transition probability matrix, then the value of \(x \) is
(a) 0.2 (b) 0.3 (c) 0.4 (d) 0.7

12. Which of the following is not an elementary transformation?
(a) \(R_i \leftrightarrow R_j \) (b) \(R_i \rightarrow 2R_i + 2C_j \)
(c) \(R_i \rightarrow 2R_i - 4R_j \) (d) \(C_i \rightarrow C_i + 5C_j \)

13. If \(\rho(A) = \rho(A,B) \) then the system is
(a) Consistent and has infinitely many solutions
(b) Consistent and has a unique solution
(c) Consistent (d) inconsistent

14. If \(\rho(A) = \rho(A,B) = \) the number of unknowns, then the system is
(a) Consistent and has infinitely many solutions
(b) Consistent and has a unique solution
(c) inconsistent (d) consistent

15. If \(\rho(A) \neq \rho(A,B) \), then the system is
(a) Consistent and has infinitely many solutions
(b) Consistent and has a unique solution
(c) inconsistent (d) consistent

16. In a transition probability matrix, all the entries are greater than or equal to
(a) 2 (b) 1 (c) 0 (d) 3
17. If the number of variables in a non-homogeneous system $AX = B$ is n, then the system possesses a unique solution only when

- $(a) \rho(A) = \rho(A, B) > n$
- $(b) \rho(A) = \rho(A, B) = n$
- $(c) \rho(A) = \rho(A, B) < n$
- (d) none of these

18. The system of equations $4x + 6y = 5, 6x + 9y = 7$ has

- (a) a unique solution
- (b) no solution
- (c) infinitely many solutions
- (d) none of these

19. For the system of equations $x + 2y + 3z = 1, 2x + y + 3z = 2, 5x + 5y + 9z = 4$

- (a) there is only one solution
- (b) there exists infinitely many solutions
- (c) there is no solution
- (d) None of these

20. If $|A| \neq 0$, then A is

- (a) non-singular matrix
- (b) singular matrix
- (c) zero matrix
- (d) none of these

21. The system of linear equations $x + y + z = 2, 2x + y - z = 3, 3x + 2y + k = 4$ has unique solution, if k is not equal to

- $(a) 4$
- $(b) 0$
- $(c) -4$
- $(d) 1$

22. Cramer’s rule is applicable only to get an unique solution when

- $(a) \Delta_x \neq 0$
- $(b) \Delta_y \neq 0$
- $(c) \Delta \neq 0$
- $(d) \Delta_y \neq 0$

23. If $\frac{a_1}{x} + \frac{b_1}{y} = c_1, \frac{a_2}{x} + \frac{b_2}{y} = c_2, \Delta_1 = \left| \begin{array}{cc} a_1 & b_1 \\ a_2 & b_2 \end{array} \right|; \Delta_2 = \left| \begin{array}{cc} b_1 & c_1 \\ b_2 & c_2 \end{array} \right|; \Delta_3 = \left| \begin{array}{cc} c_1 & a_1 \\ c_2 & a_2 \end{array} \right|$ then (x, y) is

- $(a) \left(\frac{\Delta_2, \Delta_3}{\Delta_1, \Delta_1} \right)$
- $(b) \left(\frac{\Delta_3, \Delta_2}{\Delta_1, \Delta_1} \right)$
- $(c) \left(\frac{\Delta_1, \Delta_1}{\Delta_2, \Delta_3} \right)$
- $(d) \left(\frac{-\Delta_1, -\Delta_1}{\Delta_2, \Delta_3} \right)$

24. $|A_{n \times n}| = 3$ $|adjA| = 243$ then the value n is

- $(a) 4$
- $(b) 5$
- $(c) 6$
- $(d) 7$

25. Rank of a null matrix is

- $(a) 0$
- $(b) -1$
- $(c) \infty$
- $(d) 1$
Miscellaneous problems

1. Find the rank of the matrix \[A = \begin{pmatrix} 1 & -3 & 4 & 7 \\ 9 & 1 & 2 & 0 \end{pmatrix}. \]

2. Find the rank of the matrix \[A = \begin{pmatrix} -2 & 1 & 3 & 4 \\ 0 & 1 & 1 & 2 \\ 1 & 3 & 4 & 7 \end{pmatrix}. \]

3. Find the rank of the matrix \[A = \begin{pmatrix} 4 & 5 & 2 & 2 \\ 3 & 2 & 1 & 6 \\ 4 & 4 & 8 & 0 \end{pmatrix}. \]

4. Examine the consistency of the system of equations:
 \[x + y + z = 7, \quad x + 2y + 3z = 18, \quad y + 2z = 6. \]

5. Find \(k \) if the equations \(2x + 3y - z = 5, \quad 3x - y + 4z = 2, \quad x + 7y - 6z = k \) are consistent.

6. Find \(k \) if the equations \(x + y + z = 1, \quad 3x - y - z = 4, \quad x + 5y + 5z = k \) are inconsistent.

7. Solve the equations \(x + 2y + z = 7, \quad 2x - y + 2z = 4, \quad x + y - 2z = -1 \) by using Cramer’s rule.

8. The cost of 2 kg of wheat and 1 kg of sugar is ₹100. The cost of 1 kg of wheat and 1 kg of rice is ₹80. The cost of 3 kg of wheat, 2 kg of sugar and 1 kg of rice is ₹220. Find the cost of each per kg., using Cramer’s rule.

9. A salesman has the following record of sales during three months for three items A, B and C, which have different rates of commission.

<table>
<thead>
<tr>
<th>Months</th>
<th>Sales of units</th>
<th>Total commission drawn (in ₹)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>January</td>
<td>90</td>
<td>100</td>
</tr>
<tr>
<td>February</td>
<td>130</td>
<td>50</td>
</tr>
<tr>
<td>March</td>
<td>60</td>
<td>100</td>
</tr>
</tbody>
</table>

Find out the rate of commission on the items A, B and C by using Cramer’s rule.

10. The subscription department of a magazine sends out a letter to a large mailing list inviting subscriptions for the magazine. Some of the people receiving this letter already subscribe to the magazine while others do not. From this mailing list, 60% of those who already subscribe will subscribe again while 25% of those who do not now subscribe will subscribe. On the last letter it was found that 40% of those receiving it ordered a subscription. What percent of those receiving the current letter can be expected to order a subscription?
Summary

In this chapter we have acquired the knowledge of

- **Rank of a matrix**
 - The rank of a matrix A is the order of the largest non-zero minor of A
 - The rank of a matrix A is the order of the largest non-zero minor of A
 - $\rho(A) \geq 0$
 - If A is a matrix of order $m \times n$, then $\rho(A) \leq \min\{m,n\}$
 - The rank of a zero matrix is ‘0’
 - The rank of a non-singular matrix of order $n \times n$ is ‘n’

- **Equivalent Matrices**
 - Two Matrices A and B are said to be equivalent if one can be obtained from another by a finite number of elementary transformations and we write it as $A \sim B$.

- **Echelon form**
 - A matrix of order $m \times n$ is said to be in echelon form if the row having all its entries zero will lie below the row having non-zero entry.

 - A system of equations is said to be consistent if it has at least one set of solution. Otherwise, it is said to be inconsistent
 - If $\rho \left[\begin{bmatrix} A, & B \end{bmatrix} \right] = \rho \left(A \right)$, then the equations are consistent.
 - If $\rho \left[\begin{bmatrix} A, & B \end{bmatrix} \right] = \rho \left(A \right) = n$, then the equations are consistent and have unique solution.
 - If $\rho \left[\begin{bmatrix} A, & B \end{bmatrix} \right] = \rho \left(A \right) < n$, then the equations are consistent and have infinitely many solutions.
 - If $\rho \left[\begin{bmatrix} A, & B \end{bmatrix} \right] \neq \rho \left(A \right)$ then the equations are inconsistent and has no solution.

- $|\text{adj}A| = |A|^{n-1}$

- If $|A| = 0$ then A is a singular matrix. Otherwise, A is a non-singular matrix.

- In $AX = B$ if $|A| \neq 0$ then the system is consistent and it has unique solution.

- Cramer’s rule is applicable only when $\Delta \neq 0$.
<table>
<thead>
<tr>
<th>Glossary</th>
<th>Tamil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matrix equation</td>
<td>அணி சமன்பாடு</td>
</tr>
<tr>
<td>Transition</td>
<td>நிலை மபாற்றம்</td>
</tr>
<tr>
<td>Commodities</td>
<td>ப்பாருட்கள்</td>
</tr>
<tr>
<td>Consistent</td>
<td>ஒருங்கலமவு</td>
</tr>
<tr>
<td>Inconsistent</td>
<td>ஒருங்கலமவு அற்ற</td>
</tr>
<tr>
<td>Rank</td>
<td>தரம்</td>
</tr>
<tr>
<td>Production</td>
<td>உற்த்தி</td>
</tr>
<tr>
<td>Augmented</td>
<td>மிகுதிப்டுத்திய,விரிவு்டுத்தப்ட்ட</td>
</tr>
<tr>
<td>Echelon form</td>
<td>ஏறு்டி வடிவம்</td>
</tr>
<tr>
<td>Unknown</td>
<td>பதரியபாத</td>
</tr>
<tr>
<td>Transit system</td>
<td>ப்பாக்குவரத்து அலமபபு</td>
</tr>
<tr>
<td>Intersecting</td>
<td>பவடடிக்ப்கபாள்ளும்</td>
</tr>
<tr>
<td>Singular matrix</td>
<td>பூஜ்ஜியக்ப்கபாலவ அணி</td>
</tr>
<tr>
<td>Elementary Transformations</td>
<td>அணிக்ப்கபாலவ அணி</td>
</tr>
<tr>
<td>Linear equations</td>
<td>பேரிய சமன்பாடு்கள்</td>
</tr>
<tr>
<td>Equilibrium</td>
<td>சமநிலை</td>
</tr>
<tr>
<td>Commuters</td>
<td>ப்பாற்றிகள்</td>
</tr>
<tr>
<td>Subsequent</td>
<td>பதபா்டர்ச்சியபான</td>
</tr>
<tr>
<td>Determinant</td>
<td>அணிக்ப்பச்சாட்சிய அணி</td>
</tr>
<tr>
<td>Singular matrix</td>
<td>பூஜ்ஜியக்ப்பச்சாட்சிய அணி</td>
</tr>
<tr>
<td>Non- Singular matrix</td>
<td>பூஜ்ஜியமற்ற ப்பச்சாட்சிய அணி</td>
</tr>
<tr>
<td>Square matrix</td>
<td>சதுர அணி</td>
</tr>
<tr>
<td>Matrix</td>
<td>அணி</td>
</tr>
<tr>
<td>Order</td>
<td>வரிலச</td>
</tr>
<tr>
<td>Consistent</td>
<td>ஒருங்கலமவு அற்ற</td>
</tr>
<tr>
<td>Variables</td>
<td>பாற்றிகள்</td>
</tr>
<tr>
<td>Non homogeneous</td>
<td>பேரியப்பச்சாட்சிய</td>
</tr>
<tr>
<td>Homogeneous</td>
<td>சதுரப்பச்சாட்சிய</td>
</tr>
<tr>
<td>Unique solution</td>
<td>பவளிப்ல்டத்தீர்வு</td>
</tr>
<tr>
<td>Trivial solution</td>
<td>பவளிப்ல்டமற்ற தீர்வு</td>
</tr>
<tr>
<td>Non trivial solution</td>
<td>பவளிப்ல்டமற்ற தீர்வு</td>
</tr>
</tbody>
</table>
Step 1: Open the Browser, type the URL Link given below (or) Scan the QR Code. GeoGebra work Book named “12th Standard Business Mathematics” will open. In the work book there are two Volumes. Select “Volume-1”.

Step 2: Select the worksheet named “Matrices and Determinants-Cramer’s rule”. There is a question based on Cramer’s rule. Change the coefficients of x, y and z by typing the no.s in the respective boxes. Move the 3D picture and see the nature of solution.

Expected Result is shown in this picture.

Browse in the link

12th standard Business Mathematics :https://ggbm.at/uzkernwror Scan the QR Code.

Applications of Matrices and Determinants
Georg Friedrich Bernhard Riemann (Nineteenth century) was an inspiring German mathematician. He was very much recognised for his contribution in calculus.

Calculus divides naturally into two parts, namely (i) differential calculus and (ii) integral calculus. Differential calculus deals with the derivatives of a function whereas, integral calculus deals with the anti derivative of the derived function that is, finding a function when its rate of change/marginal function is known. So integration is the technique to find the original function from the derived function, the function obtained is called the indefinite integral. Definite integral is the evaluation of the indefinite integral between the specified limits, and is equal to the area bounded by the graph of the function (curve) between the specified limits and the axis. The area under the curve is approximately equal to the area obtained by summing the area of the number of inscribed rectangles and the approximation becomes exact in the limit that the number of rectangles approaches infinity. Therefore both differential and integral calculus are based on the theory of limits.

The word ‘integrate’ literally means that ‘to find the sum’. So, we believe that the name “Integral Calculus” has its origin from this process of summation. Calculus is the mathematical tool used to test theories about the origins of the universe, the development of tornadoes and hurricanes. It is also used to find the surplus of consumer and producer, identifying the probability density function of a continuous random variable, obtain an original function from its marginal function and etc., in business applications.

In this chapter, we will study about the concept of integral and some types of method of indefinite and definite integrals.
Learning Objectives

After studying this chapter, the students will be able to understand:
- the indefinite integral.
- how to find the indefinite integral of a function involving sum, difference and constant multiples.
- how to use and where to apply the substitution technique in indefinite integrals.
- the techniques involved in integration by parts and some special type of integrals.
- the fundamental theorems of integral calculus.
- the properties of definite integral and its applications.
- the application of a particular case of gamma integral.
- the properties of gamma function.
- the evaluation of the definite integral as the limit of a sum.

2.1 Indefinite Integrals

2.1.1 Concept of Indefinite Integral

In differential calculus, we have learned how to calculate the differential coefficient \(f'(x) \) of a given function \(f(x) \) with respect to \(x \). In this chapter, we have to find out the primitive function \(f(x) \) (i.e. original function) whenever its derived function \(f'(x) \) (i.e. derivative of a function) is given, such process is called integration or anti differentiation.

\[\therefore \text{Integration is the reverse process of differentiation} \]

We know that \(\frac{d}{dx}(\sin x) = \cos x \). Here \(\cos x \) is known as Derived function, and \(\sin x \) is known as Primitive function [also called as Anti derivative function (or) Integral function].

Definition 2.1

A function \(F(x) \) is said to be a primitive function of the derived function \(f(x) \), if

\[\frac{d}{dx}[F(x)] = f(x) \]

Now, consider the following examples which are already known to us.

\[
\begin{align*}
\frac{d}{dx}(x^3) &= 3x^2, \\
\frac{d}{dx}(x^3 + 5) &= 3x^2, \\
\frac{d}{dx}(x^3 - \frac{3}{2}) &= 3x^2, \\
\frac{d}{dx}(x^3 + e) &= 3x^2, \\
\frac{d}{dx}(x^3 - \pi) &= 3x^2, \\
\end{align*}
\]

\[\text{...} \]
From the above examples, we observe that $3x^2$ is the derived function of the primitive functions x^3, $x^3 + 5$, $x^3 - \frac{1}{2}$, $x^3 + e$, $x^3 - \pi$, ... and which indicates that the primitive functions need not be unique, even though the derived function is unique. So we come to a conclusion that $x^3 + c$ is the primitive function of the derived function $3x^2$.

∴ For every derived function, there are infinitely many primitives by choosing c arbitrarily from the set of real numbers \mathbb{R}. So we called these integrals as indefinite integrals.

In general, \[\frac{d}{dx} \left[F(x) \right] = f(x) \Rightarrow \int f(x) \, dx = F(x) + c, \]
where c is called the constant of integration.

Remarks

- If two different primitive functions $F(x)$ and $G(x)$ have the same derived function $f(x)$, then they differ only by a constant term.
- $\int f(x) \, dx$ is called as indefinite integral.
- The symbol looks like an elongated S \int, which stands for “summation” is the sign of integration.
- $\int f(x) \, dx$ is read as integral of $f(x)$ with respect to x.
- $f(x)$ in $\int f(x) \, dx$ [i.e. the function to be integrated] is called as integrand.
- x in $\int f(x) \, dx$ is the variable of integration.
- The term integration means the process of finding the integral.
- The term constant of integration means any real number c, considered as a constant function.

Definition 2.2
The process of determining an integral of a given function is defined as integration of a function.

2.1.2 **Two important properties of Integral Calculus**

(i) if k is any constant, then $\int k \, f(x) \, dx = k \int f(x) \, dx$

(ii) if $f(x)$ and $g(x)$ are any two functions, then $\int \left[f(x) \pm g(x) \right] \, dx = \int f(x) \, dx \pm \int g(x) \, dx$
Methods of Integration

The following are the four principal methods of integration.

(i) Integration by decomposition.
(ii) Integration by parts.
(iii) Integration by substitution.
(iv) Integration by successive reduction.

2.1.3 Integration by decomposition

Apply this method, whenever the integrand is impossible to integrate directly, but it can be integrated after decomposing into a sum or difference of integrands whose individual integrals are already known.

Some standard results of integration

Type: I

(i) \[\int x^n \, dx = \frac{x^{n+1}}{n+1} + c, \quad n \neq -1 \]
(ii) \[\int (ax + b)^n \, dx = \frac{(ax + b)^{n+1}}{a(n+1)} + c, \quad n \neq -1 \]

Example 2.1

Evaluate \[\int \frac{ax^2 + bx + c}{\sqrt{x}} \, dx \]

Solution:

\[\int \frac{ax^2 + bx + c}{\sqrt{x}} \, dx = \int \left(ax^{\frac{3}{2}} + bx^{\frac{1}{2}} + cx^{-\frac{1}{2}} \right) \, dx \]

Remember!

Integrate a function \(f(x) \) means, finding a function \(F(x) \) such that

\[\frac{d}{dx} [F(x) + c] = f(x) \]

Note

Here, we discuss only the first three methods of integration, because the method of integration by successive reduction is beyond the scope of the syllabus.

Note

The integrals which are directly obtained from their corresponding derivatives are known as the standard results of integration.

Integrate a function \(f(x) \) means, finding a function \(F(x) \) such that

\[\frac{d}{dx} [F(x) + c] = f(x) \]

Here, we discuss only the first three methods of integration, because the method of integration by successive reduction is beyond the scope of the syllabus.
\[\int x^3 dx + \frac{1}{x^2} dx + c \int x^{-\frac{3}{2}} dx \]

\[= \frac{2ax^{\frac{5}{2}}}{5} + \frac{2bx^{\frac{3}{2}}}{3} + 2c x^{-\frac{1}{2}} + k \]

Example 2.2

Evaluate \(\int \sqrt{2x+1} \, dx \)

Solution:

\[\int \sqrt{2x+1} \, dx = \int (2x+1)^{\frac{1}{2}} \, dx \]

\[= \frac{(2x+1)^{\frac{3}{2}}}{3} + c \]

Example 2.3

Evaluate \(\int \frac{dx}{(2x+3)^3} \)

Solution:

\[\int \frac{dx}{(2x+3)^3} = \int (2x+3)^{-3} \, dx \]

\[= -\frac{1}{2(2x+3)} + c \]

Example 2.4

Evaluate \(\int \left(x + \frac{1}{x} \right)^2 \, dx \)

Solution:

\[\int \left(x + \frac{1}{x} \right)^2 \, dx = \int \left(x^2 + 2 + \frac{1}{x^2} \right) \, dx \]

\[= \int x^2 \, dx + 2 \int dx + \int \frac{1}{x^2} \, dx \]

\[= \frac{x^3}{3} + 2x - \frac{1}{x} + c \]

Example 2.5

Evaluate \(\int (x^3 + 7)(x - 4) \, dx \)
Solution:
\[\int (x^3 + 7)(x - 4) \, dx = \int (x^4 - 4x^3 + 7x - 28) \, dx \]
\[= \frac{x^5}{5} - x^4 + \frac{7x^2}{2} - 28x + c \]

Example 2.6
Evaluate \(\int \frac{2x^2 - 14x + 24}{x - 3} \, dx \)

Solution:
\[\int \frac{2x^2 - 14x + 24}{x - 3} \, dx = \int \frac{(x - 3)(2x - 8)}{x - 3} \, dx \]
\[= \int (2x - 8) \, dx \]
\[= x^2 - 8x + c \]

By factorisation,
\[2x^2 - 14x + 24 = (x - 3)(2x - 8) \]

Example 2.7
Evaluate \(\int \frac{x + 2}{\sqrt{2x + 3}} \, dx \)

Solution:
\[\int \frac{x + 2}{\sqrt{2x + 3}} \, dx = \int \left(\frac{1}{2} \left(\frac{2x + 3}{3} \right)^{\frac{1}{2}} + \frac{1}{2} \left(2x + 3 \right)^{\frac{1}{2}} \right) \, dx \]
\[= \frac{1}{2} \left(\frac{2x + 3}{3} \right)^{\frac{1}{2}} + \frac{1}{2} \left(2x + 3 \right)^{\frac{1}{2}} + c \]

Example 2.8
Evaluate \(\int \frac{1}{\sqrt{x + 2} - \sqrt{x - 2}} \, dx \)

Solution:
\[\int \frac{1}{\sqrt{x + 2} - \sqrt{x - 2}} \, dx = \int \frac{1}{4} \left(\sqrt{x + 2} + \sqrt{x - 2} \right) \, dx \]
\[= \frac{1}{6} \left(\frac{1}{2} \right) \left(\sqrt{x + 2} + \sqrt{x - 2} \right) + c \]

By rationalisation,
\[\int \frac{1}{\sqrt{x + 2} - \sqrt{x - 2}} \, dx = \frac{1}{\sqrt{x + 2} - \sqrt{x - 2}} \times \frac{\sqrt{x + 2} + \sqrt{x - 2}}{\sqrt{x + 2} + \sqrt{x - 2}} \]
\[= \frac{\sqrt{x + 2} + \sqrt{x - 2}}{4} \]
Exercise 2.1

Integrate the following with respect to x.

1. $\sqrt{3x+5}$
2. $\left(9x^2 - \frac{4}{x^2}\right)^2$
3. $(3 + x)(2 - 5x)$
4. $\sqrt{x(x^3 - 2x + 3)}$
5. $\frac{8x + 13}{\sqrt[4]{x} + 7}$
6. $\frac{1}{\sqrt{x + 1 + \sqrt{x - 1}}}$

7. If $f'(x) = x + b$, $f(1) = 5$ and $f(2) = 13$, then find $f(x)$

8. If $f'(x) = 8x^3 - 2x$ and $f(2) = 8$, then find $f(x)$

Type: II

(i) $\int \frac{1}{x} \, dx = \log|x| + c$

(ii) $\int \frac{1}{ax + b} \, dx = \frac{1}{a} \log|ax + b| + c$

Example 2.9

Evaluate $\int \frac{3x^2 + 2x + 1}{x} \, dx$

Solution:

\[
\int \frac{3x^2 + 2x + 1}{x} \, dx = \int \left(3x + 2 + \frac{1}{x}\right) \, dx
= \frac{3x^2}{2} + 2x + \log|x| + c
\]

Example 2.10

Evaluate $\int \frac{2}{3x + 5} \, dx$

Solution:

\[
\int \frac{2}{3x + 5} \, dx = 2 \int \frac{1}{3x + 5} \, dx
= \frac{2}{3} \log|3x + 5| + c
\]

Example 2.11

Evaluate $\int \frac{x^2 + 2x + 3}{x + 1} \, dx$

\[
\int \frac{a}{ax + b} \, dx = \int \frac{d(ax + b)}{ax + b}
= \log|ax + b| + c
\]
Solution:
\[\int \frac{x^2 + 2x + 3}{x + 1} \, dx = \int \left((x + 1) + \frac{2}{x + 1} \right) \, dx \]
\[= \frac{x^2}{2} + x + 2 \log |x + 1| + c \]

Example 2.12
Evaluate \(\int \frac{x^3 + 5x^2 - 9}{x + 2} \, dx \)

Solution:
\[\int \frac{x^3 + 5x^2 - 9}{x + 2} \, dx = \int \left[x^2 + 3x - 6 + \frac{3}{x + 2} \right] \, dx \]
\[= \frac{x^3}{3} + \frac{3x^2}{2} - 6x + 3 \log |x + 2| + c \]

Example 2.13
Evaluate \(\int \frac{7x - 1}{x^2 - 5x + 6} \, dx \)

Solution:
\[\int \frac{7x - 1}{x^2 - 5x + 6} \, dx = \int \left[\frac{20}{x - 3} - \frac{13}{x - 2} \right] \, dx \]
\[= 20 \log |x - 3| - 13 \log |x - 2| + c \]

Example 2.14
Evaluate \(\int \frac{3x + 2}{(x - 2)^2(x - 3)} \, dx \)

Solution:
\[\int \frac{3x + 2}{(x - 2)^2(x - 3)} \, dx = \int \left[-\frac{11}{x - 2} - \frac{8}{(x - 2)^2} + \frac{11}{x - 3} \right] \, dx \]
\[= -11 \log |x - 2| - \frac{8}{x - 2} + 11 \log |x - 3| + c \]

By partial fractions,
\[\frac{3x + 2}{(x - 2)^2(x - 3)} = \frac{A}{x - 2} + \frac{B}{(x - 2)^2} + \frac{C}{x - 3} \]
\[\Rightarrow \frac{3x + 2}{(x - 2)^2(x - 3)} = -\frac{11}{x - 2} - \frac{8}{(x - 2)^2} + \frac{11}{x - 3} \]

Integral Calculus – I
Example 2.15

Evaluate \(\int \frac{3x^2 + 6x + 1}{(x + 3)(x^2 + 1)} \, dx \)

Solution:

\[
\int \frac{3x^2 + 6x + 1}{(x + 3)(x^2 + 1)} \, dx = \int \left[\frac{1}{(x + 3)} + \frac{2x}{(x^2 + 1)} \right] \, dx \\
= \int \frac{dx}{(x + 3)} + \int \frac{2x}{(x^2 + 1)} \, dx \\
= \log |x + 3| + \log |x^2 + 1| + c \\
= \log \left(x^3 + 3x^2 + x + 3 \right) + c
\]

By partial fractions,

\[
\frac{3x^2 + 6x + 1}{(x + 3)(x^2 + 1)} = \frac{A}{x + 3} + \frac{Bx + C}{x^2 + 1}
\]

\[
\Rightarrow \frac{3x^2 + 6x + 1}{(x + 3)(x^2 + 1)} = \frac{1}{x + 3} + \frac{2x}{x^2 + 1}
\]

Exercise 2.2

Integrate the following with respect to \(x \).

1. \(\left(\sqrt{2x} - \frac{1}{\sqrt{2x}} \right)^2 \)
2. \(\frac{x^4 - x^2 + 2}{x - 1} \)
3. \(\frac{x^3}{x + 2} \)
4. \(\frac{x^3 + 3x^2 - 7x + 11}{x + 5} \)
5. \(\frac{3x + 2}{(x - 2)(x - 3)} \)
6. \(\frac{4x^2 + 2x + 6}{(x + 1)^2 (x - 3)} \)
7. \(\frac{3x^2 - 2x + 5}{x - 1}(x^2 + 5) \)
8. If \(f'(x) = \frac{1}{x} \) and \(f(1) = \frac{\pi}{4} \), then find \(f(x) \)

Type: III

(i) \(\int e^x \, dx = e^x + c \)
(ii) \(\int e^{ax+b} \, dx = \frac{1}{a}e^{ax+b} + c \)
(iii) \(\int a^x \, dx = \frac{1}{\log a} a^x + c \), \(a > 0 \) and \(a \neq 1 \)
(iv) \(\int a^{mx+n} \, dx = \frac{1}{m \log a} a^{mx+n} + c \), \(a > 0 \) and \(a \neq 1 \)

Example 2.16

Evaluate \(\int 3^{2x^3} \, dx \)

Solution:

\[
\int 3^{2x^3} \, dx = \int 3^{2x} \cdot 3^3 \, dx
\]

By partial fractions,
\[
49
\]
Integral Calculus – I

\[
\int 3^{2x} \, dx = 27 \frac{3^{2x}}{2\log 3} + c
\]

Example 2.17

Evaluate \(\int \frac{e^x + 7}{e^x} \, dx \)

Solution:

\[
\int \frac{e^x + 7}{e^x} \, dx = \int (1 + 7e^{-x}) \, dx = x - 7e^{-x} + c
\]

Example 2.18

Evaluate \(\int \frac{5 + 5e^{2x}}{e^x + e^{-x}} \, dx \)

Solution:

\[
\int \frac{5 + 5e^{2x}}{e^x + e^{-x}} \, dx = 5 \int \frac{e^x (e^{-x} + e^x)}{e^x + e^{-x}} \, dx = 5 \int e^x \, dx = 5e^x + c
\]

Example 2.19

Evaluate \(\int \left(e^x + \frac{1}{e^x} \right)^2 \, dx \)

Solution:

\[
\int \left(e^x + \frac{1}{e^x} \right)^2 \, dx = \int \left(e^{2x} + 2 + \frac{1}{e^{2x}} \right) \, dx = \int \left(e^{2x} + e^{-2x} + 2 \right) \, dx = \frac{e^{2x}}{2} - \frac{e^{-2x}}{2} + 2x + c
\]

Exercise 2.3

Integrate the following with respect to \(x \).

1. \(e^{x\log a} + e^{a\log x} - e^{n\log x} \)
2. \(\frac{a^x - e^{x\log b}}{e^{x\log a} b^x} \)
3. \((e^x + 1)^2 e^x \)
4. \(\frac{e^{3x} - e^{-3x}}{e^x} \)

5. \(\frac{e^{3x} + e^{5x}}{e^x + e^{-x}} \)

6. \(\left[1 - \frac{1}{x^2} \right] e^{\left(\frac{x+1}{x} \right)} \)

7. \(\frac{1}{x(\log x)^2} \)

8. If \(f'(x) = e^x \) and \(f(0) = 2 \), then find \(f(x) \)

Type: IV

(i) \(\int \sin x \, dx = -\cos x + c \)
(ii) \(\int \sin(ax + b) \, dx = -\frac{1}{a} \cos(ax + b) + c \)

(iii) \(\int \cos x \, dx = \sin x + c \)
(iv) \(\int \cos(ax + b) \, dx = \frac{1}{a} \sin(ax + b) + c \)

(v) \(\int \sec^2 x \, dx = \tan x + c \)
(vi) \(\int \sec^2(ax + b) \, dx = \frac{1}{a} \tan(ax + b) + c \)

(vi) \(\int \cosec^2 x \, dx = -\cot x + c \)
(viii) \(\int \cosec^2(ax + b) \, dx = -\frac{1}{a} \cot(ax + b) + c \)

Example 2.20

Evaluate \(\int (2\sin x - 5\cos x) \, dx \)

Solution:

\[
\int (2\sin x - 5\cos x) \, dx = 2\int \sin x \, dx - 5\int \cos x \, dx = -2\cos x - 5\sin x + c
\]

Example 2.21

Evaluate \(\int \sin^2 x \, dx \)

Solution:

\[
\int \sin^2 x \, dx = \int \frac{1}{2} (1 - \cos 2x) \, dx = \frac{1}{2} \left[\int dx - \int \cos 2x \, dx \right] = \frac{1}{2} \left[x - \frac{\sin 2x}{2} \right] + c
\]

Example 2.22

Evaluate \(\int \frac{\cos 2x}{\sin^2 x \cos^2 x} \, dx \)

Solution:

\[
\int \frac{\cos 2x}{\sin^2 x \cos^2 x} \, dx = \int \left(\cosec^2 x - \sec^2 x \right) \, dx = -\cot x - \tan x + c
\]

50
12th Std. Business Mathematics and Statistics
Example 2.23

Evaluate \(\int \sqrt{1 + \sin 2x} \, dx \)

Solution:

\[
\int \sqrt{1 + \sin 2x} \, dx = \int \sqrt{(\sin x + \cos x)^2} \, dx \\
= \int (\sin x + \cos x) \, dx \\
= -\cos x + \sin x + c
\]

Change into simple integrands

\[1 + \sin 2x = \sin^2 x + \cos^2 x + 2 \sin x \cos x = (\sin x + \cos x)^2\]

Example 2.24

Evaluate \(\int \cos^3 x \, dx \)

Solution:

\[
\int \cos^3 x \, dx = \frac{1}{4} \int \cos 3x \, dx + \frac{3}{4} \int \cos x \, dx \\
= \frac{\sin 3x}{12} + \frac{3 \sin x}{4} + c
\]

Change into simple integrands

\[\cos 3x = 4 \cos^3 x - 3 \cos x\]

\[\cos^3 x = \frac{1}{4} \left[\cos 3x + 3 \cos x \right]
\]

Exercise 2.4

Integrate the following with respect to \(x \).

1. \(2 \cos x - 3 \sin x + 4 \sec^2 x - 5 \csc^2 x\)
2. \(\sin^3 x\)
3. \(\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}\)
4. \(\frac{1}{\sin^2 x \cos^2 x} \left[\text{Hint: } \sin^2 x + \cos^2 x = 1 \right]\)
5. \(\sqrt{1 - \sin 2x}\)

2.1.4 Integration by parts

Type: V

(1) We know that, if \(u \) and \(v \) are two differentiable functions of \(x \),

then \(\frac{d}{dx} (uv) = u \frac{dv}{dx} + v \frac{du}{dx} \).

Integrate on both sides with respect to \(x \).

\[
\int \frac{d}{dx} (uv) \, dx = \int u \frac{dv}{dx} \, dx + \int v \frac{du}{dx} \, dx \\
\Rightarrow \int d(uv) = \int u \, dv + \int v \, du \\
\int uv = \int u \, dv + \int v \, du \\
\therefore \int u \, dv = uv - \int v \, du
\]
This method is very useful when the integrand is a product of two different types of functions or a function which is not directly integrable. The success of this method depends on the proper choice of u. So we can choose the function u by using the following guidelines.

(i) If the integrand contains only a function which is directly not integrable, then take this as u.

(ii) If the integrand contains both directly integrable and non integrable functions, then take non integrable function as u.

(iii) If the integrand contains both the functions are integrable and one of them is of the form x^n, n is a positive integer, then take this x^n as u.

(iv) for all other cases, the choice of u is ours.

(Or) we can also choose u as the function which comes first in the word ”I L A T E”

Where,

- I stands for the inverse trigonometric function
- L stands for the logarithmic function
- A stands for the algebraic function
- T stands for the trigonometric function
- E stands for the exponential function

and take the remaining part of the function and dx as dv.

(2) If u and v are functions of x, then

$$\int udv = uv - u'v_1 + u''v_2 - u'''v_3 + ...$$

where u', u'', u''', ... are the successive derivatives of u and $v_1, v_2, v_3, ...$ are the repeated integrals of v.

Note

The above mentioned formula is well known as Bernoulli’s formula.

Bernoulli’s formula is applied when $u = x^n$ where n is a positive integer.

Example 2.25

Evaluate $\int xe^x dx$

Solution:

$$\int xe^x dx = \int udv$$
\[\int x^3 e^x \, dx = uv - \int vdu \]
\[= xe^x - \int e^x \, dx \]
\[= xe^x - e^x + c \]
\[= e^x (x - 1) + c \]

Example 2.26

Evaluate \(\int x^3 e^x \, dx \)

Solution:

\[\int x^3 e^x \, dx = uv - \int vdu \]
\[= uv - u'v_1 + u''v_2 - u'''v_3 + ... \]
\[= x^3 e^x - 3x^2 e^x + 6xe^x - 6e^x + c \]
\[= e^x (x^3 - 3x^2 + 6x - 6) + c \]

Example 2.27

Evaluate \(\int x^3 \log x \, dx \)

Solution:

\[\int x^3 \log x \, dx = uv - \int vdu \]
\[= \frac{x^4}{4} \log x - \frac{1}{4} \int x^3 \, dx \]
\[= \frac{x^4}{4} \log x - \frac{1}{4} \left(\frac{x^4}{4} \right) + c \]
\[= \frac{x^4}{4} \left(\log x - \frac{1}{4} \right) + c \]

Example 2.28

Evaluate \(\int (\log x)^2 \, dx \)

\[\begin{align*}
\text{Take } u &= x \\
\text{Differentiate } du &= dx \\
\text{Integrate } v &= e^x \\
\text{and } dv &= e^x \, dx \\
\text{Successive derivatives} &\quad \text{Repeated integrals}
\end{align*} \]
\[\begin{align*}
\text{Take } u &= x^3 \\
&u' = 3x^2 \\
&u'' = 6x \\
&u''' = 6
\end{align*} \]
\[\begin{align*}
&v_1 = e^x \\
v_2 = e^x \quad v_3 = e^x
\end{align*} \]
Solution:

\[\int (\log x)^2 \, dx = \int u \, dv \]

\[= uv - \int v \, du \]

\[= x (\log x)^2 - 2 \int \log x \, dx \cdots (*) \]

\[= x (\log x)^2 - 2 \int u \, dv \]

\[= x (\log x)^2 - 2 \left[uv - \int v \, du \right] \]

\[= x (\log x)^2 - 2 \left[x \log x - \int dx \right] \]

\[= x (\log x)^2 - 2x \log x + 2x + c \]

\[= x \left[(\log x)^2 - \log x^2 + 2 \right] + c \]

Example 2.29

Evaluate \(\int (x^2 - 2x + 5) e^{-x} \, dx \)

Solution:

\[\int (x^2 - 2x + 5) e^{-x} \, dx = \int u \, dv \]

\[= uv - \int v \, du \]

\[= (x^2 - 2x + 5)(-e^{-x}) - (2x - 2)e^{-x} + e^{-x} + c \]

\[= e^{-x} (-x^2 - 5) + c \]

Exercise 2.5

Integrate the following with respect to \(x \).

1. \(xe^{-x} \)
2. \(x^3 e^{-x} \)
3. \(\log x \)
4. \(x \log x \)
5. \(x^n \log x \)
6. \(x^5 e^{x^2} \)

2.1.5 Integration by substitution (or) change of variable method

Integrals of certain functions cannot be obtained directly, because they are not in any one of the standard forms as discussed above, but may be reduced to a standard form by suitable substitution. The method of evaluating an integral by reducing it to a standard form by suitable substitution is called integration by substitution.
Type: VI

1. \[\int \left[f(x) \right]^n f'(x) \, dx = \frac{\left[f(x) \right]^{n+1}}{n+1} + c, \quad n \neq -1 \]

2. \[\int \frac{f'(x)}{f(x)} \, dx = \log |f(x)| + c \]

3. \[\int \frac{f''(x)}{\sqrt{f(x)}} \, dx = 2\sqrt{f(x)} + c \]

4. \[\int e^x \left[f(x) + f'(x) \right] \, dx = e^x f(x) + c \]

5. \[\int e^{ax} \left[a f(x) + f'(x) \right] \, dx = e^{ax} f(x) + c \]

Example 2.30

Evaluate \(\int \frac{x}{x^2 + 1} \, dx \)

Solution:

\[
\int \frac{x}{x^2 + 1} \, dx = \frac{1}{2} \int \frac{2x}{x^2 + 1} \, dx \\
= \frac{1}{2} \int \frac{f'(x)}{f(x)} \, dx \\
= \frac{1}{2} \log |f(x)| + c \\
= \frac{1}{2} \log |x^2 + 1| + c
\]

Example 2.31

Evaluate \(\int \frac{x}{\sqrt{x^2 + 1}} \, dx \)

Solution:

\[
\int \frac{x}{\sqrt{x^2 + 1}} \, dx = \frac{1}{2} \int \frac{2x}{\sqrt{x^2 + 1}} \, dx \\
= \frac{1}{2} \int \frac{f'(x)}{\sqrt{f(x)}} \, dx \\
= \frac{1}{2} \left[2\sqrt{f(x)} \right] + c \\
= \sqrt{x^2 + 1} + c
\]
Example 2.32

Evaluate \[\int x \sqrt{x^2 + 1} \, dx\]

Solution:

\[
\int x \sqrt{x^2 + 1} \, dx = \frac{1}{2} \int \left(x^2 + 1 \right)^{\frac{1}{2}} (2x) \, dx
\]

\[
= \frac{1}{2} \int \left[f(x) \right]^{\frac{1}{2}} f'(x) \, dx
\]

\[
= \frac{1}{2} \left[f(x) \right]^{\frac{3}{2}} + c
\]

\[
= \frac{1}{3} \left(x^2 + 1 \right)^{\frac{3}{2}} + c
\]

Example 2.33

Evaluate \[\int \frac{x^3}{(x^2 + 1)^3} \, dx\]

Solution:

\[
\int \frac{x^3}{(x^2 + 1)^3} \, dx = \int \frac{x^2}{(x^2 + 1)^2} x \, dx
\]

\[
= \frac{1}{2} \int \frac{z - 1}{z^3} \, dz
\]

\[
= \frac{1}{2} \int \left[\frac{1}{z^2} - \frac{1}{z^3} \right] \, dz
\]

\[
= \frac{1}{2} \left[- \frac{1}{z} + \frac{1}{2z^2} \right] + c
\]

\[
= \frac{1}{4} \left(x^2 + 1 \right)^{\frac{3}{2}} - \frac{1}{2(x^2 + 1)} + c
\]

Example 2.34

Evaluate \[\int \frac{dx}{x(x^3 + 1)}\]

Take \[f(x) = x^2 + 1\]

\[\therefore f'(x) = 2x\]

Take \[z = x^2 + 1\]

\[\therefore x^2 = z - 1 \quad \text{and} \quad dz = 2x \, dx\]

\[\Rightarrow \frac{dz}{2} = x \, dx\]
Solution:

\[\int \frac{dx}{x(x^3+1)} = \int \frac{x^2}{x^3(x^3+1)}dx \]

\[= \frac{1}{3} \int \frac{dz}{z(z+1)} \]

And by partial fractions,

\[\frac{1}{z(z+1)} = \frac{A}{z} + \frac{B}{z+1} \]

\[\Rightarrow \frac{dz}{3} = x^2 dx \]

\[\Rightarrow \frac{1}{z(z+1)} = \frac{1}{z} - \frac{1}{z+1} \]

\[\int \frac{1}{z(z+1)} dz = \int \left(\frac{1}{z} - \frac{1}{z+1}\right) dz \]

\[= \frac{1}{3} \left[\log |z| - \log |z+1| \right] + c \]

\[= \frac{1}{3} \log \left| \frac{z}{z+1} \right| + c \]

\[= \frac{1}{3} \log \left| \frac{x^3}{x^3+1} \right| + c \]

Example 2.35

Evaluate \(\int x^3 e^{x^2} dx \)

Solution:

\[\int x^3 e^{x^2} dx = \int x^2 e^{x^2} (x dx) \]

\[= \frac{1}{2} \int z e^z dz \]

\[= \frac{1}{2} \left[e^z (z-1) \right] + c \]

[By applying Integration by parts]

\[= \frac{1}{2} \left[e^{x^2} (x^2-1) \right] + c \]

Example 2.36

Evaluate \(\int e^x (x^2 + 2x) dx \)

Solution:

\[\int e^x (x^2 + 2x) dx = \int e^x \left[f(x) + f'(x) \right] dx \]

\[= e^x f(x) + c \]

\[= e^x x^2 + c \]

Take \(f(x) = x^2 \)

\[\therefore f'(x) = 2x \]
Example 2.37

Evaluate \(\int \frac{xe^x}{(1+x)^2} \, dx \)

Solution:

\[
\int \frac{xe^x}{(1+x)^2} \, dx = \int e^x \left[\frac{1}{1+x} - \frac{1}{(1+x)^2} \right] \, dx
\]

\[
= \int e^x \left[f(x) + f'(x) \right] \, dx
\]

\[
= e^x f(x) + c
\]

\[
= \frac{e^x}{1+x} + c
\]

Example 2.38

Evaluate \(\int e^{2x} \left[\frac{2x-1}{4x^2} \right] \, dx \)

Solution:

\[
\int e^{2x} \left[\frac{2x-1}{4x^2} \right] \, dx = \frac{1}{4} \int e^{2x} \left[2 \left(\frac{1}{x} \right) - \frac{1}{x^2} \right] \, dx
\]

\[
= \frac{1}{4} \int e^{2x} \left[2f(x) + f'(x) \right] \, dx
\]

\[
= \frac{1}{4} \left[e^{2x} f(x) \right] + c
\]

\[
= \frac{1}{4x} e^{2x} + c
\]

Example 2.39

Evaluate \(\int \left[\frac{1}{\log x} - \frac{1}{(\log x)^2} \right] \, dx \)

Solution:

\[
\int \left[\frac{1}{\log x} - \frac{1}{(\log x)^2} \right] \, dx = \int \left[\frac{1}{z} - \frac{1}{z^2} \right] e^z \, dz
\]
\[
\int e^z \left[f(z) + f'(z) \right] dz = e^z f(z) + c
\]
\[
e^z \left[\frac{1}{z} \right] + c
\]
\[
e^z \left[\frac{x}{\log x} \right] + c
\]

Take \(z = \log x \)

\[
\therefore \frac{dz}{x} = \frac{1}{x} dx
\]

\[
\Rightarrow dx = e^z dz \quad \therefore \quad x = e^z
\]

and \(f(z) = \frac{1}{z} \)

\[
\therefore \quad f'(z) = -\frac{1}{z^2}
\]

Exercise 2.6

Integrate the following with respect to \(x \).

1. \(\frac{2x + 5}{x^2 + 5x - 7} \)
2. \(e^{3\log x} \)
3. \(\frac{e^{2x}}{e^{2x} - 2} \)
4. \(\frac{(\log x)^3}{x} \)
5. \(\frac{6x + 7}{\sqrt{3x^2 + 7x - 1}} \)
6. \((4x + 2)\sqrt{x^2 + x + 1}\)
7. \(x^8 (1 + x^9)^5 \)
8. \(\frac{x^{e-1} + e^{x-1}}{x^e + e^x} \)
9. \(\frac{1}{x \log x} \)
10. \(\frac{1}{2x^2 - 3x^2 - 2} \)
11. \(e^x (1 + x) \log(xe^x) \)
12. \(\frac{1}{x(x^2 + 1)} \)
13. \(e^x \left[\frac{1}{x^2} - \frac{2}{x^3} \right] \)
14. \(e^x \left[\frac{x - 1}{(x+1)^3} \right] \)
15. \(e^{3x} \left[\frac{3x - 1}{9x^2} \right] \)

2.1.6 Some special types of Integrals

Type: VII

To evaluate the integrals of the form \(\int \frac{dx}{ax^2 + bx + c} \), \(\int \frac{dx}{\sqrt{ax^2 + bx + c}} \) and \(\int \sqrt{ax^2 + bx + c} \, dx \), first we have to express \(ax^2 + bx + c \) as the sum or difference of two square terms \([\text{completing the squares}]\), that is \((x + \alpha)^2 + \beta^2 \) (or) \((x + \alpha)^2 - \beta^2 \) (or) \(\beta^2 - (x + \alpha)^2 \) and apply the suitable formula from the formulae given below.

1. \(\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \log \left| \frac{a + x}{a - x} \right| + c \)
2. \(\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \log \left| \frac{x - a}{x + a} \right| + c \)
3. \(\int \frac{dx}{\sqrt{x^2 - a^2}} = \log \left| x + \sqrt{x^2 - a^2} \right| + c \)
4. \(\int \frac{dx}{\sqrt{x^2 + a^2}} = \log \left| x + \sqrt{x^2 + a^2} \right| + c \)
5. \(\int \sqrt{x^2 - a^2} \, dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \log \left| x + \sqrt{x^2 - a^2} \right| + c \)
6. \(\int \sqrt{x^2 + a^2} \, dx = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \log \left| x + \sqrt{x^2 + a^2} \right| + c \)
Example 2.40

Evaluate \(\int \frac{dx}{16-x^2} \)

Solution:

\[
\int \frac{dx}{16-x^2} = \int \frac{dx}{4^2-x^2} = \frac{1}{2(4)} \log \left| \frac{4+x}{4-x} \right| + C
\]

\[
= \frac{1}{8} \log \left| \frac{4+x}{4-x} \right| + C
\]

Example 2.41

Evaluate \(\int \frac{dx}{1-25x^2} \)

Solution:

\[
\int \frac{dx}{1-25x^2} = \frac{1}{25} \int \frac{dx}{\left(\frac{1}{5} \right)^2 - x^2}
\]

\[
= \frac{1}{25} \left[\frac{1}{2 \left(\frac{1}{5} \right)} \log \left| \frac{1+5x}{1-5x} \right| \right] + C
\]

\[
= \frac{1}{10} \log \left| \frac{1+5x}{1-5x} \right| + C
\]

Example 2.42

Evaluate \(\int \frac{dx}{2+x-x^2} \)

Solution:

\[
\int \frac{dx}{2+x-x^2} = \int \frac{dx}{\left(\frac{3}{2} \right)^2 - \left(x - \frac{1}{2} \right)^2}
\]

\[
= \frac{1}{2 \left(\frac{3}{2} \right)} \log \left| \frac{3 \left(x - \frac{1}{2} \right)}{3 \left(x - \frac{1}{2} \right)} \right| + C
\]

\[
= \frac{1}{3} \log \left| \frac{3 \left(x - \frac{1}{2} \right)}{3 \left(x - \frac{1}{2} \right)} \right| + C
\]
\[
\frac{dx}{4x^2 - 1} = \frac{1}{3} \log \left| \frac{2 + 2x}{4 - 2x} \right| + c
\]
\[
= \frac{1}{3} \log \left| \frac{1 + x}{2 - x} \right| + c
\]

Example 2.43

Evaluate \(\int \frac{dx}{4x^2 - 1} \)

Solution:

\[
\int \frac{dx}{4x^2 - 1} = \int \frac{dx}{4 \left(x^2 - \frac{1}{4} \right)}
\]
\[
= \frac{1}{4} \int \frac{dx}{x^2 - \left(\frac{1}{2} \right)^2}
\]
\[
= \frac{1}{4} \left[\frac{1}{\left(\frac{1}{2} \right)} \log \left| \frac{x - \frac{1}{2}}{x + \frac{1}{2}} \right| \right] + c
\]
\[
= \frac{1}{4} \log \left| \frac{2x - 1}{2x + 1} \right| + c
\]

Example 2.44

Evaluate \(\int \frac{x^2}{x^2 - 25} \)

Solution:

\[
\int \frac{x^2}{x^2 - 25} \, dx = \int \frac{x^2 - 25 + 25}{x^2 - 25} \, dx
\]
\[
= \int \left[1 + \frac{25}{x^2 - 25} \right] \, dx
\]
\[
= \int dx + 25 \int \frac{dx}{x^2 - 25}
\]
\[
= x + 25 \left[\frac{1}{2(5)} \log \left| \frac{x - 5}{x + 5} \right| \right] + c
\]
\[
= x + \frac{5}{2} \log \left| \frac{x - 5}{x + 5} \right| + c
\]
Example 2.45
Evaluate \(\int \frac{dx}{x^2 - 3x + 2} \)

Solution:

\[
\int \frac{dx}{x^2 - 3x + 2} = \int \frac{dx}{(x - \frac{3}{2})^2 - (\frac{1}{2})^2} = \frac{1}{2} \log \left| \frac{x - \frac{3}{2}}{(x - \frac{3}{2})^2 - (\frac{1}{2})^2} \right| + c
\]

By completing the squares

\[
x^2 - 3x + 2 = (x - \frac{3}{2})^2 - \frac{9}{4} + 2 = (x - \frac{3}{2})^2 - \frac{1}{4} = (x - \frac{3}{2}) - (\frac{1}{2})^2
\]

Example 2.46
Evaluate \(\int \frac{dx}{\sqrt{4x^2 - 9}} \)

Solution:

\[
\int \frac{dx}{\sqrt{4x^2 - 9}} = \frac{1}{2} \int \frac{dx}{\sqrt{x^2 - \left(\frac{3}{2}\right)^2}} = \frac{1}{2} \log \left| x + \sqrt{x^2 - \left(\frac{3}{2}\right)^2} \right| + c
\]

Do you know?

\[
\int \frac{m}{\sqrt{(mx)^2 - a^2}} dx = \int \frac{d(mx)}{\sqrt{(mx)^2 - a^2}} = \log \left| mx + \sqrt{(mx)^2 - a^2} \right| + c
\]

Note

\[m \log n \pm k = c \]

Example 2.47
Evaluate \(\int \frac{dx}{\sqrt{x^2 - 3x + 2}} \)
Solution:
\[\int \frac{dx}{\sqrt{x^2 - 3x + 2}} = \int \frac{dx}{\sqrt{\left(x - \frac{3}{2} \right)^2 - \left(\frac{1}{2} \right)^2}}\]
\[= \log \left| x - \frac{3}{2} + \sqrt{\left(x - \frac{3}{2} \right)^2 - \left(\frac{1}{2} \right)^2} \right| + c\]
\[= \log \left| x - \frac{3}{2} + \sqrt{x^2 - 3x + 2} \right| + c\]

Example 2.48
Evaluate \(\int \frac{dx}{\sqrt{x^2 + 25}} \)

Solution:
\[\int \frac{dx}{\sqrt{x^2 + 25}} = \int \frac{dx}{\sqrt{x^2 + 5^2}}\]
\[= \log \left| x + \sqrt{x^2 + 5^2} \right| + c = \log \left| x + \sqrt{x^2 + 25} \right| + c\]

Example 2.49
Evaluate \(\int \frac{dx}{\sqrt{x^2 + 4x + 8}} \)

Solution:
\[\int \frac{dx}{\sqrt{x^2 + 4x + 8}} = \int \frac{dx}{\sqrt{(x + 2)^2 + 2^2}}\]
\[= \log \left| x + 2 + \sqrt{(x + 2)^2 + 2^2} \right| + c\]
\[= \log \left| x + 2 + \sqrt{x^2 + 4x + 8} \right| + c\]

Example 2.50
Evaluate \(\int \frac{x^3 dx}{\sqrt{x^8 + 1}} \)

Solution:
\[\int \frac{x^3 dx}{\sqrt{x^8 + 1}} = \frac{1}{4} \int \frac{4x^3 dx}{\sqrt{(x^4)^2 + 1^2}}\]
\[= \frac{1}{4} \log \left| x^4 + \sqrt{(x^4)^2 + 1^2} \right| + c\]
\[= \frac{1}{4} \log \left| x^4 + \sqrt{x^8 + 1} \right| + c\]
Example 2.51

Evaluate \(\int \sqrt{x^2 - 16} \, dx \)

Solution:

\[
\int \sqrt{x^2 - 16} \, dx = \int \sqrt{x^2 - 4^2} \, dx \\
= \frac{x}{2} \sqrt{x^2 - 4^2} - \frac{4^2}{2} \log \left| x + \sqrt{x^2 - 4^2} \right| + c \\
= \frac{x}{2} \sqrt{x^2 - 16} - 8 \log \left| x + \sqrt{x^2 - 16} \right| + c
\]

Example 2.52

Evaluate \(\int \sqrt{x^2 + 5} \, dx \)

Solution:

\[
\int \sqrt{x^2 + 5} \, dx = \int \left(x^2 + (\sqrt{5})^2 \right) \, dx \\
= \frac{x}{2} \left(x^2 + (\sqrt{5})^2 \right) + \frac{\sqrt{5}^2}{2} \log \left| x + \sqrt{x^2 + (\sqrt{5})^2} \right| + c \\
= \frac{x}{2} \sqrt{x^2 + 5} + \frac{5}{2} \log \left| x + \sqrt{x^2 + 5} \right| + c
\]

Example 2.53

Evaluate \(\int \sqrt{4x^2 + 9} \, dx \)

Solution:

\[
\int \sqrt{4x^2 + 9} \, dx = \int \left(2x \right)^2 + 3^2 \right) \, d(2x) \\
= \frac{1}{2} \left[2x \right] \sqrt{(2x)^2 + 3^2} + 3^2 \log \left| 2x + \sqrt{(2x)^2 + 3^2} \right| + c \\
= \frac{x}{2} \sqrt{4x^2 + 9} + \frac{9}{4} \log \left| 2x + \sqrt{4x^2 + 9} \right| + c
\]
Example 2.54

Evaluate \(\int \sqrt{x^2 - 4x + 3} \, dx \)

Solution:

\[
\int \sqrt{x^2 - 4x + 3} \, dx = \int \sqrt{(x-2)^2 - 1^2} \, dx
\]

\[
= \frac{(x-2)}{2} \sqrt{(x-2)^2 - 1^2} - \frac{1}{2} \log \left| (x-2) + \sqrt{(x-2)^2 - 1^2} \right| + c
\]

Example 2.55

Evaluate \(\int \frac{1}{x - \sqrt{x^2 - 1}} \, dx \)

Solution:

\[
\int \frac{1}{x - \sqrt{x^2 - 1}} \, dx = \int \left[x + \sqrt{x^2 - 1} \right] \, dx
\]

\[
= \frac{x^2}{2} + \frac{x}{2} \sqrt{x^2 - 1} - \frac{1}{2} \log \left| x + \sqrt{x^2 - 1} \right| + c
\]

Exercise 2.7

Integrate the following with respect to \(x \)

1. \(\frac{1}{9 - 16x^2} \)
2. \(\frac{1}{9 - 8x - x^2} \)
3. \(\frac{1}{2x^2 - 9} \)
4. \(\frac{1}{x^2 - x - 2} \)
5. \(\frac{1}{x^2 + 3x + 2} \)
6. \(\frac{1}{2x^2 + 6x - 8} \)
7. \(\frac{e^x}{e^{2x} - 9} \)
8. \(\frac{1}{\sqrt{9x^2 - 7}} \)
9. \(\frac{1}{\sqrt{x^2 + 6x + 13}} \)
10. \(\frac{1}{\sqrt{x^2 - 3x + 2}} \)
11. \(\frac{x^3}{\sqrt{x^8 - 1}} \)
12. \(\sqrt{1 + x + x^2} \)
13. \(\sqrt{x^2 - 2} \)
14. \(\sqrt{4x^2 - 5} \)
15. \(\sqrt{2x^2 + 4x + 1} \)
16. \(\frac{1}{x + \sqrt{x^2 - 1}} \)
2.2 Definite Integrals

So far we learnt about indefinite integrals on elementary algebraic, exponential, trigonometric and logarithmic functions. Now we are going to study about the definite integrals.

Geometrically, definite integral \(\int_{a}^{b} f(x) \, dx \) represents the limit of a sum. It is also represented as the area bounded the curve \(y = f(x) \), the axis of \(x \), and the ordinates \(x = a \) and \(x = b \).

2.2.1 The fundamental theorems of Integral Calculus

Theorem 2.1 First fundamental theorem of Integral Calculus:

If \(f(x) \) is a continuous function and \(F(x) = \int_{a}^{x} f(t) \, dt \), then \(F'(x) = f(x) \).

Theorem 2.2 Second fundamental theorem of Integral Calculus:

Let \(f(x) \) be a continuous function on \([a, b]\), if \(F(x) \) is anti derivative of \(f(x) \), then

\[
\int_{a}^{b} f(x) \, dx = F(b) - F(a).
\]

Here \(a \) and \(b \) are known as the lower limit and upper limit of the definite integral.

Example 2.56

Evaluate \(\int_{0}^{1} (x^3 + 7x^2 - 5x) \, dx \)

Solution:

We have already learnt about the evaluation of the integral \(\int (x^3 + 7x^2 - 5x) \, dx \) in the previous section.

\[
\therefore \int (x^3 + 7x^2 - 5x) \, dx = \frac{x^4}{4} + \frac{7x^3}{3} - \frac{5x^2}{2} + c
\]

Now,

\[
\int_{0}^{1} (x^3 + 7x^2 - 5x) \, dx = \left[\frac{x^4}{4} + \frac{7x^3}{3} - \frac{5x^2}{2} \right]_{0}^{1}
\]

\[
\Rightarrow \int_{a}^{b} f(x) \, dx = F(b) - F(a)
\]

66 | 12th Std. Business Mathematics and Statistics
Example 2.57

Find the integration for \(\frac{dy}{dx} = \frac{2x}{5x^2 + 1} \) with limiting values as 0 and 1

Solution:

Here, \(\frac{dy}{dx} = \frac{2x}{5x^2 + 1} \)

\[y = \int_0^1 \frac{2x}{5x^2 + 1} \, dx \]

\[= \frac{1}{5} \int_0^1 \frac{10x}{5x^2 + 1} \, dx \]

\[= \frac{1}{5} \left[\log(5x^2 + 1) \right]_0^1 \]

\[= \frac{1}{5} \left[\log 6 - \log 1 \right] \]

\[= \frac{1}{5} \log 6 \]

Example 2.58

Evaluate \(\int_0^1 (e^x - 4a^x + 2 + \sqrt{x}) \, dx \)

Solution:

\[\int_0^1 (e^x - 4a^x + 2 + \sqrt{x}) \, dx = \left[e^x - 4 \frac{a^x}{\log a} + 2x + 3 \frac{x^3}{4} \right]_0^1 \]

\[= e - 4 \frac{a}{\log a} + 2 + \frac{3}{4} - 1 + \frac{4}{\log a} \]

\[= e + \frac{4(1-a)}{\log a} + \frac{7}{4} \]

Example 2.59

Evaluate \(\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \sin x \, dx \)
Solution:
\[
\int_{\pi/6}^{\pi/3} \sin x \, dx = \left[-\cos x \right]_{\pi/6}^{\pi/3} \\
= \left(\cos \frac{\pi}{3} - \cos \frac{\pi}{6} \right) \\
= \frac{1}{2} \left(\sqrt{3} - 1 \right)
\]

Example 2.60

Evaluate \(\int_{0}^{\pi/2} \cos^2 x \, dx \)

Solution:
\[
\int_{0}^{\pi/2} \cos^2 x \, dx = \frac{1}{2} \int_{0}^{\pi/2} [1 + \cos 2x] \, dx \\
= \frac{1}{2} \left[x + \frac{\sin 2x}{2} \right]_{0}^{\pi/2} \\
= \frac{1}{2} \left[\frac{\pi}{2} + 0 \right] = \frac{\pi}{4}
\]

Example 2.61

Evaluate \(\int_{0}^{1} \left[e^{\log x} + e^{x \log a} \right] \, dx \)

Solution:
\[
\int_{0}^{1} \left[e^{\log x} + e^{x \log a} \right] \, dx = \int_{0}^{1} \left(x^{a} + a^{x} \right) \, dx \\
= \left[\frac{x^{a+1}}{a+1} + \frac{a^{x}}{\log a} \right]_{0}^{1} \\
= \left(\frac{1}{a+1} + 1 \right) - \left(0 + \frac{1}{\log a} \right) \\
= \frac{1}{a+1} + \frac{1}{\log a} - \frac{1}{\log a} \\
= \frac{1}{a+1} + \frac{(a-1)}{\log a}
\]

Note
\(e^{\log x} = x^{a} \)
Example 2.62

Evaluate \(\int \frac{3x^4 + 1}{x^2} \, dx \)

Solution:

\[
\begin{align*}
\int \frac{3x^4 + 1}{x^2} \, dx &= \int \left(x^2 + x^{-2} \right) \, dx \\
&= \left[\frac{x^3}{3} - \frac{1}{x} \right]_2^3 \\
&= \left(9 - \frac{1}{3} \right) - \left(\frac{8}{3} - \frac{1}{2} \right) = \frac{13}{2}
\end{align*}
\]

Example 2.63

Evaluate \(\int_{-1}^{1} (x^3 + 3x^2)^3 (x^2 + 2) \, dx \)

Solution:

\[
\begin{align*}
\int_{-1}^{1} (x^3 + 3x^2)^3 (x^2 + 2) \, dx &= \left[\frac{1}{3} \left(x^3 + 3x^2 \right)^4 \right]_{-1}^{1} \\
&= \frac{1}{3} (64 - 4) \\
&= 20
\end{align*}
\]

Example 2.64

Evaluate \(\int_{a}^{b} \frac{\log x}{x} \, dx \) \(a, b > 0\)

Solution:

\[
\begin{align*}
\int_{a}^{b} \frac{\log x}{x} \, dx &= \left[\log x \right]_{a}^{b} \\
&= \left[\frac{3}{2} \left(\log x \right)^{3/2} \right]_{a}^{b} \\
&= \frac{2}{3} \left[(\log b)^{3/2} - (\log a)^{3/2} \right]
\end{align*}
\]

\[\log b^3 = \frac{3}{2} \log b \text{ but,} \]
\[(\log b)^3 \neq \frac{3}{2} \log b \text{ Further,} \]
\[(\log b)^3 - (\log a)^3 \neq \left(\log \frac{b}{a} \right)^3 \]
Example 2.65
Evaluate \(\int_{-1}^{1} x\sqrt{x+1} \, dx \)

Solution:
\[
\int_{-1}^{1} x\sqrt{x+1} \, dx = \int_{0}^{2} (t-1) \sqrt{t} \, dt
\]
\[
= \int_{0}^{2} \left(\frac{3}{2} t^{\frac{5}{2}} - \frac{1}{2} t^{\frac{3}{2}} \right) \, dt
\]
\[
= \left[\frac{2t^{\frac{5}{2}}}{5} - \frac{2t^{\frac{3}{2}}}{3} \right]_{0}^{2}
\]
\[
= \frac{8\sqrt{2}}{5} - \frac{4\sqrt{2}}{3}
\]
\[
= \frac{4\sqrt{2}}{15}
\]

Example 2.66
Evaluate \(\int_{0}^{\infty} e^{-\frac{x}{2}} \, dx \)

Solution:
\[
\int_{0}^{\infty} e^{-\frac{x}{2}} \, dx = -2 \left[e^{-\frac{x}{2}} \right]_{0}^{\infty}
\]
\[
= -2[0-1] = 2
\]

Example 2.67
Evaluate \(\int_{0}^{\infty} x^2 e^{-x^3} \, dx \)

Solution:
\[
\int_{0}^{\infty} x^2 e^{-x^3} \, dx = \int_{0}^{\infty} e^{-t\frac{3}{3}} \, dt
\]
\[
= \int_{0}^{\infty} e^{-t} \frac{dt}{3}
\]
\[
= \frac{1}{3} \left[-e^{-t} \right]_{0}^{\infty}
\]
\[
= \frac{1}{3} [0-1]
\]
\[
= \frac{1}{3}
\]
Example 2.68

Evaluate \(\int_{1}^{2} \frac{1}{(x+1)(x+2)} \, dx \)

Solution:

\[
\int_{1}^{2} \frac{1}{(x+1)(x+2)} \, dx = \int_{1}^{2} \left[\frac{1}{x+1} - \frac{1}{x+2} \right] \, dx
= \left[\log |x+1| - \log |x+2| \right]_{1}^{2}
= \log \frac{3}{4} - \log \frac{2}{3}
= \log \frac{9}{8}
\]

Example 2.69

Evaluate \(\int_{1}^{e} \log x \, dx \)

Solution:

\[
\int_{1}^{e} \log x \, dx = \int_{1}^{e} u \, dv
= \left[uv \right]_{1}^{e} - \int_{1}^{e} v \, du
= \left[x \log x \right]_{1}^{e} - \int_{1}^{e} \frac{x}{x} \, dx
= (e \log e - 1 \log 1) - [x]_{1}^{e}
= (e - 0) - (e - 1)
= 1
\]

Example 2.70

Evaluate \(\int_{0}^{\frac{\pi}{2}} x \sin x \, dx \)

Solution:

\[
\int_{0}^{\frac{\pi}{2}} x \sin x \, dx = \int_{0}^{\frac{\pi}{2}} udv
\]

By partial fractions,

\[
\frac{1}{(x+1)(x+2)} = \frac{A}{x+1} + \frac{B}{x+2}
\Rightarrow \frac{1}{(x+1)(x+2)} = \frac{1}{x+1} - \frac{1}{x+2}
\]

By partial fractions,

\[
\frac{1}{(x+1)(x+2)} = \frac{A}{x+1} + \frac{B}{x+2}
\Rightarrow \frac{1}{(x+1)(x+2)} = \frac{1}{x+1} - \frac{1}{x+2}
\]

Take \(u = \log x \) and \(dv = dx \)

\[
\int \log x \, dx = \int \log x \, dx
\]

Differentiate \(du = \frac{1}{x} \, dx \) Integrate \(v = x \)

\[
\int \log x \, dx = \left[x \log x \right] - \int \frac{x}{x} \, dx
= \left(e \log e - 1 \log 1 \right) - [x]_{1}^{e}
= (e - 0) - (e - 1)
= 1
\]

Take \(u = x \) and \(dv = \sin x \, dx \)

\[
\int x \sin x \, dx = \int u \, dv
\]

Differentiate \(du = dx \) Integrate \(v = -\cos x \)

\[
\int x \sin x \, dx = \left[-x \cos x \right] - \int \cos x \, dx
= \left(e - 0 \right) - (e - 1)
= 1
\]
\[\int_0^\pi uv^2 \, dv = \left[uv \right]_0^\pi - \int_0^\pi v \, du \]

\[= \left[-x \cos x \right]_0^\pi + \int_0^\pi \cos x \, dx \]

\[= 0 + [\sin x]_0^\pi = 1 \]

Example 2.71

If \(\int_1^3 x^2 \, dx = -1 \), then find the value of \(a \) (\(a \in \mathbb{R} \)).

Solution:

Given that \(\int_1^3 x^2 \, dx = -1 \)

\[\left[x^3 \right]_1^a = -1 \]

\[a^3 - 1 = -1 \]

\[a^3 = 0 \Rightarrow a = 0 \]

Example 2.72

If \(\int_1^a x \, dx = 1 \) and \(\int_1^b x \, dx = 1 \), then find \(a \) and \(b \)

Solution:

Given that \(\int_1^a x \, dx = 1 \)

\[\left[x \right]_1^a = 1 \]

\[b - a = 1 \quad \text{... (1)} \]

Now, \(\int_1^a x \, dx = 1 \)

\[\left[x^2 \right]_1^a = 1 \]

\[b^2 - a^2 = 2 \]

\[(b + a)(b - a) = 2 \]
\[b + a = 2 \quad \ldots \quad (2) \quad \therefore b - a = 1 \]

(1) + (2) \Rightarrow \quad 2b = 3

\therefore b = \frac{3}{2}

Now, \quad \frac{3}{2} - a = 1 \quad \therefore \text{from (1)}

\therefore a = \frac{1}{2}

Example 2.73

Evaluate \[\int_{1}^{4} f(x) \, dx \], where \[f(x) = \begin{cases}
7x + 3, & \text{if } 1 \leq x \leq 3 \\
8x, & \text{if } 3 < x \leq 4
\end{cases} \]

Solution:

\[\int_{1}^{4} f(x) \, dx = \int_{1}^{3} f(x) \, dx + \int_{3}^{4} f(x) \, dx \]
\[= \int_{1}^{3} (7x + 3) \, dx + \int_{3}^{4} 8x \, dx \]
\[= \left[\frac{7x^2}{2} + 3x \right]_{1}^{3} + \left[\frac{8x^2}{2} \right]_{3}^{4} \]
\[= \frac{63}{2} + 9 - \frac{13}{2} + 64 - 36 \]
\[= 62 \]

Example 2.74

If \[f(x) = \begin{cases}
x^2, & -2 \leq x < 1 \\
x, & 1 \leq x < 2 \\
x - 4, & 2 \leq x \leq 4
\end{cases} \], then find the following

(i) \[\int_{-2}^{1} f(x) \, dx \] \quad (ii) \[\int_{1}^{2} f(x) \, dx \] \quad (iii) \[\int_{2}^{3} f(x) \, dx \] \quad (iv) \[\int_{-2}^{15} f(x) \, dx \] \quad (v) \[\int_{1}^{3} f(x) \, dx \]

Solution:

(i) \[\int_{-2}^{1} f(x) \, dx = \int_{-2}^{1} x^2 \, dx = \left[\frac{x^3}{3} \right]_{-2}^{1} = \frac{1}{3} - \left(\frac{8}{3} \right) = 3 \]

(ii) \[\int_{1}^{2} f(x) \, dx = \int_{1}^{2} x \, dx = \left[\frac{x^2}{2} \right]_{1}^{2} = \frac{4}{2} - \frac{1}{2} = \frac{3}{2} \]
(iii) \[\int_{ \frac{3}{2} }^{ \frac{3}{2} } f(x) \, dx = \int_{ \frac{3}{2} }^{ \frac{3}{2} } (x-4) \, dx = \left[\frac{x^2}{2} - 4x \right]_{\frac{3}{2}} = \left(\frac{9}{2} - 12 \right) - \left(\frac{4}{2} - 8 \right) = -\frac{15}{2} + 6 = -\frac{3}{2} \]

(iv) \[\int_{-2}^{1.5} f(x) \, dx = \int_{-2}^{1.5} f(x) \, dx + \int_{1}^{1.5} f(x) \, dx = 3 + \int_{1}^{1.5} x \, dx \quad \text{using (i)} \]

\[= 3 + \left[\frac{x^2}{2} \right]_{1}^{1.5} = 3 + \frac{2.25}{2} - 0.5 = 3 + 1.25 = 4.25 \]

(v) \[\int_{1}^{3} f(x) \, dx = \int_{1}^{2} f(x) \, dx + \int_{2}^{3} f(x) \, dx \]

\[= \frac{3}{2} + \left(\frac{-3}{2} \right) = 0 \quad \text{using (ii) and (iii)} \]

Exercise 2.8

I Using second fundamental theorem, evaluate the following:

1. \[\int_{0}^{1} e^{2x} \, dx \]
2. \[\int_{0}^{1} \sqrt{1-4x} \, dx \]
3. \[\int_{1}^{2} \frac{x \, dx}{x^2 + 1} \]
4. \[\int_{0}^{\frac{\pi}{2}} \frac{e^{x} \, dx}{1 + e^{x}} \]
5. \[\int_{0}^{1} xe^{2} \, dx \]
6. \[\int_{0}^{1} \frac{dx}{x(1 + \log x)^3} \]
7. \[\int_{-1}^{1} \frac{2x + 3}{x^2 + 3x + 7} \, dx \]
8. \[\int_{0}^{1} \sqrt{1 + \cos x} \, dx \]
9. \[\int_{1}^{2} \frac{x-1}{x^2} \, dx \]

II Evaluate the following:

1. \[\int_{1}^{4} f(x) \, dx \quad \text{where} \quad f(x) = \begin{cases} 4x + 3, & 1 \leq x \leq 2 \\ 3x + 5, & 2 < x \leq 4 \end{cases} \]
2. \[\int_{0}^{2} f(x) \, dx \quad \text{where} \quad f(x) = \begin{cases} 3 - 2x - x^2, & x \leq 1 \\ x^2 + 2x - 3, & 1 < x \leq 2 \end{cases} \]
3. \[\int_{-1}^{1} f(x) \, dx \quad \text{where} \quad f(x) = \begin{cases} x, & x \geq 0 \\ -x, & x < 0 \end{cases} \]
4. \[f(x) = \begin{cases} cx, & 0 < x < 1 \\ 0, & \text{otherwise} \end{cases} \quad \text{Find} \quad c \quad \text{if} \quad \int_{0}^{1} f(x) \, dx = 2 \]

2.2.2 Properties of definite integrals

(i) \[\int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(t) \, dt \]
(ii) \[\int_{a}^{b} f(x) \, dx = -\int_{b}^{a} f(x) \, dx \]
(iii) If \(f(x) \) and \(g(x) \) are continuous functions in \([a, b]\), then
\[
\int_a^b [f(x) \pm g(x)] \, dx = \int_a^b f(x) \, dx \pm \int_a^b g(x) \, dx
\]

(iv) If \(f(x) \) is a continuous function in \([a, b]\) and \(a < c < b \), then
\[
\int_a^b f(x) \, dx = \int_a^c f(x) \, dx + \int_c^b f(x) \, dx
\]

(v) \[
\int_0^a f(x) \, dx = \int_0^{a-x} f(a-x) \, dx
\]

Proof:

R.H.S. \(= \int_0^a f(a-x) \, dx\)

\[= \int_a^0 f(t)(-dt)\]

\[= \int_0^a f(t) \, dt\]

\[= \int_0^a f(x) \, dx\] [using the Property (i)]

= L.H.S.

(vi) (a) If \(f(x) \) is an even function, then \(\int_{-a}^a f(x) \, dx = 2 \int_0^a f(x) \, dx \)

(b) If \(f(x) \) is an odd function, then \(\int_{-a}^a f(x) \, dx = 0 \)

Proof:

(a) If \(f(x) \) is an even function, then \(f(x) = f(-x) \) …(1)

\[
\int_{-a}^a f(x) \, dx = \int_{-a}^0 f(x) \, dx + \int_0^a f(x) \, dx
\]

\[= \int_{-a}^0 f(-x) \, dx + \int_0^a f(x) \, dx\] [using (1)]
\[
\int_{-a}^{a} f(x) \, dx = \int_{0}^{a} f(t)(-dt) + \int_{0}^{a} f(x) \, dx \\
= \int_{0}^{a} f(t) \, dt + \int_{0}^{a} f(x) \, dx \\
= \int_{0}^{a} f(x) \, dx + \int_{0}^{a} f(x) \, dx \quad \text{[using the Property (i)]} \\
= 2 \int_{0}^{a} f(x) \, dx
\]

(b) If \(f(x) \) is an odd function, then \(f(-x) = -f(x) \) \(\ldots (2) \)
\[
\int_{-a}^{a} f(x) \, dx = \int_{0}^{a} f(x) \, dx + \int_{0}^{a} f(x) \, dx \\
= \int_{-a}^{0} -f(-x) \, dx + \int_{0}^{a} f(x) \, dx \quad \text{using (2)}
\]

Take \(-x = t \Rightarrow dx = -dt\)

<table>
<thead>
<tr>
<th>(x)</th>
<th>(-a)</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t)</td>
<td>(a)</td>
<td>0</td>
</tr>
</tbody>
</table>

\[
\therefore \int_{-a}^{a} f(x) \, dx = -\int_{0}^{a} f(t)(-dt) + \int_{0}^{a} f(x) \, dx \\
= -\int_{0}^{a} f(t) \, dt + \int_{0}^{a} f(x) \, dx \\
= -\int_{0}^{a} f(x) \, dx + \int_{0}^{a} f(x) \, dx \quad \text{[using the Property (i)]} \\
= 0
\]

(vii) \(\int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a + b - x) \, dx \)

Proof:

Let \(a + b - x = t \) and \(t = a + b - x \)

\[
-\int_{a}^{0} \rightarrow \int_{0}^{b} \quad \text{[using the Property (i)]}
\]

Apply the above mentioned substitution only in first part of integral of the R.H.S

<table>
<thead>
<tr>
<th>(t)</th>
<th>(a)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
</tbody>
</table>

\[
\int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a + b - x) \, dx
\]
Evaluate the following using properties of definite integrals:

Example 2.75

Evaluate \(\int_{-1}^{1} \frac{x^5}{a^2 - x^2} \) dx

Solution:

Let \(f(x) = \frac{x^5}{a^2 - x^2} \)

\(f(-x) = \frac{(-x)^5}{a^2 - (-x)^2} = \frac{-x^5}{a^2 - x^2} = -f(x) \)

Here \(f(x) = -f(x) \)

\(\therefore f(x) \) is an odd function

\(\Rightarrow \int_{-1}^{1} \frac{x^5}{a^2 - x^2} \) dx = 0

Example 2.76

Evaluate \(\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \cos x \) dx

Solution:

Let \(f(x) = \cos x \)

\(f(-x) = \cos(-x) = \cos x \)

\(\Rightarrow f(x) = -f(x) \)

\(\therefore f(x) \) is an even function

\(\therefore \int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \cos x \) dx = 2 \(\int_{0}^{\frac{\pi}{2}} \cos x \) dx

\(= 2 \left[\sin x \right]_{0}^{\frac{\pi}{2}} \)

\(= 2 \left[\sin \frac{\pi}{2} - \sin 0 \right] \)

\(= 2 \)
Example 2.77

Evaluate \(\int_{-1}^{1} (x^2 + x) \, dx \)

Solution:

\[
\int_{-1}^{1} (x^2 + x) \, dx = \int_{-1}^{1} x^2 \, dx + \int_{-1}^{1} x \, dx \\
= 2 \int_{0}^{1} x^2 \, dx + 0 \quad [\because x^2 \text{ is an even function and } x \text{ is an odd function}]
\]

\[
= 2 \left[\frac{x^3}{3} \right]_{0}^{1} = 2 \left[\frac{1}{3} - 0 \right]
\]

\[
= \frac{2}{3}
\]

Example 2.78

Evaluate \(\int_{0}^{\pi/2} \frac{\sin x}{\sin x + \cos x} \, dx \)

Solution:

Let \(I = \int_{0}^{\pi/2} \frac{\sin x}{\sin x + \cos x} \, dx \) \hspace{1cm} \ldots (1)

\[
I = \int_{0}^{\pi/2} \frac{\sin \left(\frac{\pi}{2} - x \right)}{\sin \left(\frac{\pi}{2} - x \right) + \cos \left(\frac{\pi}{2} - x \right)} \, dx \\
= \int_{0}^{\pi/2} \frac{\cos x}{\cos x + \sin x} \, dx \quad \ldots (2)
\]

\((1) + (2) \Rightarrow \)

\[
2I = \int_{0}^{\pi/2} \left[\frac{\sin x}{\sin x + \cos x} + \frac{\cos x}{\cos x + \sin x} \right] \, dx \\
= \int_{0}^{\pi/2} dx = \left[x \right]_{0}^{\pi/2} = \frac{\pi}{2}
\]

\[
\therefore \quad I = \frac{\pi}{4}
\]
Example 2.79

Evaluate \(\int_{2}^{5} \frac{\sqrt{x}}{\sqrt{x} + \sqrt{7 - x}} \, dx \)

Solution:

Let \(I = \int_{2}^{5} \frac{\sqrt{x}}{\sqrt{x} + \sqrt{7 - x}} \, dx \) ...(1)

\[I = \int_{2}^{5} \frac{\sqrt{2 + 5 - x}}{\sqrt{2 + 5 - x} + \sqrt{7 - (2 + 5 - x)}} \, dx \]

\[\therefore \, f(x)dx = \int_{a}^{b} f(a + b - x)dx \]

\[I = \int_{2}^{5} \frac{\sqrt{7 - x}}{\sqrt{7 - x} + \sqrt{x}} \, dx \] ...(2)

\((1) + (2) \Rightarrow \)

\[2I = \int_{2}^{5} \left[\frac{\sqrt{x}}{\sqrt{x} + \sqrt{7 - x}} + \frac{\sqrt{7 - x}}{\sqrt{7 - x} + \sqrt{x}} \right] \, dx \]

\[= \int_{2}^{5} \frac{\sqrt{x} + \sqrt{7 - x}}{\sqrt{x} + \sqrt{7 - x}} \, dx \]

\[= \int_{2}^{5} dx = \left[x \right]_{2}^{5} = 3 \]

\[\therefore \, I = \frac{3}{2} \]

Exercise 2.9

Evaluate the following using properties of definite integrals:

1. \(\int_{-\pi/4}^{\pi/4} x^3 \cos^3 x \, dx \)
2. \(\int_{-\pi/2}^{\pi/2} \sin^2 \theta \, d\theta \)
3. \(\int_{-1}^{1} \log \left(\frac{2 - x}{2 + x} \right) \, dx \)
4. \(\int_{0}^{\pi/2} \frac{\sin^7 x}{\sin^7 x + \cos^7 x} \, dx \)
5. \(\int_{0}^{1} \log \left(\frac{1}{x} - 1 \right) \, dx \)
6. \(\int_{0}^{1} \frac{x}{\left(1 - x \right)^{3/4}} \, dx \)

2.1.3 Gamma Integral

Gamma integral is an important result which is very useful in the evaluation of a particular type of an improper definite integrals.
First, let us know about the concepts of indefinite integrals, proper definite integrals and improper definite integrals

Indefinite integral:

An integral function which is expressed without limits, and so containing an arbitrary constant is called an indefinite integral

Example: $\int e^{-t} dt$

Proper definite integral:

Proper definite integral is an integral function, which has both the limits a and b are finite and the integrand $f(x)$ is continuous in $[a, b]$.

Example: $\int_{0}^{1} e^{-t} dt$

Improper definite integral:

An improper definite integral is an integral function, in which the limits either a or b or both are infinite, or the integrand $f(x)$ becomes infinite at some points of the interval $[a, b]$.

Example: $\int_{0}^{\infty} e^{-t} dt$

Definition 2.3

For $n > 0$, $\int_{0}^{\infty} x^{n-1} e^{-x} dx$ is known known as Gamma function and is denoted by $\Gamma(n)$ [read as Gamma of n].

Note

If n is a positive integer, then $\int_{0}^{\infty} x^{n} e^{-ax} dx = \frac{n!}{a^{n+1}}$ is the particular case of Gamma Integral.

Properties:

1. $\Gamma(n) = (n-1)\Gamma(n-1), n > 1$

2. $\Gamma(n+1) = n\Gamma(n), n > 0$
3. \(\Gamma(n+1) = n! \), \(n \) is a positive integer.

4. \(\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi} \)

Example 2.80

Evaluate

(i) \(\Gamma(6) \)
(ii) \(\Gamma\left(\frac{7}{2}\right) \)
(iii) \(\int_{0}^{\infty} e^{-2x}x^5 \, dx \)
(iv) \(\int_{0}^{\infty} e^{-x} \, dx \)

Solution:

(i) \(\Gamma(6) = 5! \)

\[= 120 \]

(ii) \(\Gamma\left(\frac{7}{2}\right) = \frac{5}{2} \Gamma\left(\frac{5}{2}\right) \)

\[= \frac{5 \cdot 3}{2 \cdot 2} \Gamma\left(\frac{3}{2}\right) \]

\[= \frac{5 \cdot 3 \cdot 1}{2 \cdot 2 \cdot 2} \Gamma\left(\frac{1}{2}\right) \]

\[= \frac{15}{8} \sqrt{\pi} \]

(iii) we know that

\[\int_{0}^{\infty} x^n e^{-ax} \, dx = \frac{n!}{a^{n+1}} \]

\[\therefore \int_{0}^{\infty} e^{-2x}x^5 \, dx = \frac{5!}{2^{5+1}} = \frac{5!}{2^6} \]

(iv) \(\Gamma(n) = \int_{0}^{\infty} t^{n-1} e^{-t} \, dt \)

Put \(t = x^2 \Rightarrow dt = 2xdx \)

\[\therefore \Gamma(n) = \int_{0}^{\infty} e^{-x^2} (x^2)^{n-1} 2x \, dx \]

\[= \int_{0}^{\infty} e^{-x^2} x^{2n-2} \, 2x \, dx \]

\[= 2 \int_{0}^{\infty} e^{-x^2} x^{2n-4} \, dx \]

Put \(n = \frac{1}{2} \), we have
\[
\Gamma \left(\frac{1}{2} \right) = 2 \int_{0}^{\infty} e^{-x^2} \, dx
\]
\[
\Rightarrow \sqrt{\pi} = 2 \int_{0}^{\infty} e^{-x^2} \, dx
\]
\[
\therefore \int_{0}^{\infty} e^{-x^2} \, dx = \frac{\sqrt{\pi}}{2}
\]

Exercise 2.10

1. Evaluate the following:
 (i) \(\Gamma (4) \)
 (ii) \(\Gamma \left(\frac{9}{2} \right) \)
 (iii) \(\int_{0}^{\infty} e^{-mx} x^6 \, dx \)
 (iv) \(\int_{0}^{\infty} e^{-4x} x^4 \, dx \)
 (v) \(\int_{0}^{\infty} e^{-\frac{x}{2}} x^5 \, dx \)

2. If \(f(x) = \begin{cases} x^2 e^{-2x}, & x \geq 0 \\ 0, & \text{otherwise} \end{cases} \), then evaluate \(\int_{0}^{\infty} f(x) \, dx \)

2.2.4 Definite integral as the limit of a sum

Let \(f(x) \) be a continuous real valued function in \([a, b]\), which is divided into \(n \) equal parts of width \(h \), then

\[
\int_{a}^{b} f(x) \, dx = \lim_{n \to \infty} h \left[f(a) + f(a+h) + f(a+2h) + \ldots + f(a+(n-1)h) \right], \quad \text{where} \quad h = \frac{b-a}{n}
\]

(or)

\[
\int_{a}^{b} f(x) \, dx = \lim_{n \to \infty} \sum_{r=1}^{n} h f(a + rh), \quad \text{where} \quad h = \frac{b-a}{n}
\]

The following results are very useful in evaluating definite integral as the limit of a sum

(i) \(1 + 2 + 3 + \ldots + n = \frac{n(n+1)}{2} = \sum_{r=1}^{n} r \)

(ii) \(1^2 + 2^2 + 3^2 + \ldots + n^2 = \frac{n(n+1)(2n+1)}{6} = \sum_{r=1}^{n} r^2 \)

(iii) \(1^3 + 2^3 + 3^3 + \ldots + n^3 = \left[\frac{n(n+1)}{2} \right]^2 = \sum_{r=1}^{n} r^3 \)

Example 2.81

Evaluate the integral as the limit of a sum: \(\int_{0}^{1} x \, dx \)
Solution:

\[\int_{a}^{b} f(x) \, dx = \lim_{n \to \infty} \sum_{r=1}^{n} h \, f(a + rh) \]

Here \(a = 0, \ b = 1, \ h = \frac{b-a}{n} = \frac{1-0}{n} = \frac{1}{n} \) and \(f(x) = x \)

Now \(f(a + rh) = \frac{0 + \frac{r}{n}}{\frac{1}{n}} = \frac{r}{n} \)

On substituting in (1) we have

\[\int_{0}^{1} x \, dx = \lim_{n \to \infty} \sum_{r=1}^{n} \frac{1}{n} \cdot \frac{r}{n} \]

\[= \lim_{n \to \infty} \frac{1}{n^2} \sum_{r=1}^{n} r \]

\[= \lim_{n \to \infty} \frac{1}{n^2} \cdot \frac{n(n+1)}{2} \]

\[= \lim_{n \to \infty} \frac{n^2 \left(1 + \frac{1}{n}\right)}{2n^2} \]

\[= \frac{1 + 0}{2} = \frac{1}{2} \]

\[\therefore \quad \int_{0}^{1} x \, dx = \frac{1}{2} \]

Example 2.82

Evaluate the integral as the limit of a sum: \(\int_{1}^{2} (2x + 1) \, dx \)

Solution:

\[\int_{a}^{b} f(x) \, dx = \lim_{n \to \infty} \sum_{r=1}^{n} h \, f(a + rh) \]

Here \(a = 1, \ b = 2, \ h = \frac{b-a}{n} = \frac{2-1}{n} = \frac{1}{n} \) and \(f(x) = 2x + 1 \)

\[f(a + rh) = f \left(1 + \frac{r}{n}\right) = \left[2 \left(1 + \frac{r}{n}\right) + 1 \right] \]

\[= 2 + \frac{2r}{n} + 1 \]
\[
f(a + rh) = 3 + \frac{2r}{n}
\]

\[
\int_{1}^{2} f(x) \, dx = \lim_{n \to \infty} \sum_{r=1}^{n} \frac{1}{n} \left(3 + \frac{2r}{n} \right)
\]

\[
= \lim_{n \to \infty} \sum_{r=1}^{n} \left(\frac{3}{n} + \frac{2r}{n^2} \right)
\]

\[
= \lim_{n \to \infty} \left[\frac{3}{n} \sum_{r=1}^{n} 1 + \frac{2}{n^2} \sum_{r=1}^{n} r \right]
\]

\[
= \lim_{n \to \infty} \left[\frac{3}{n} \cdot n + \frac{2}{n^2} \cdot n \cdot (n+1) \right]
\]

\[
= 3 + \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)
\]

\[
\int_{1}^{2} f(x) \, dx = 3 + 1 = 4
\]

Example 2.83

Evaluate the integral as the limit of a sum: \(\int_{1}^{2} x^2 \, dx \)

Solution:

\[
\int_{a}^{b} f(x) \, dx = \lim_{n \to \infty} \sum_{h=0}^{n} h \cdot f(a + rh)
\]

Here \(a = 1, \ b = 2, \ h = \frac{b-a}{n} = \frac{2-1}{n} = \frac{1}{n} \) and \(f(x) = x^2 \)

Now \(f(a + rh) = f(1 + \frac{r}{n}) = \left(1 + \frac{r}{n} \right)^2 = 1 + \frac{2r}{n} + \frac{r^2}{n^2} \)

\[\therefore \int_{1}^{2} x^2 \, dx = \lim_{n \to \infty} \sum_{r=1}^{n} \frac{1}{n} \left(1 + \frac{2r}{n} + \frac{r^2}{n^2} \right) \]

\[
= \lim_{n \to \infty} \sum_{r=1}^{n} \left(\frac{1}{n} + \frac{2r}{n^2} + \frac{r^2}{n^3} \right)
\]

\[
= \lim_{n \to \infty} \left(\frac{1}{n} \sum_{r=1}^{n} 1 + \frac{2}{n^2} \sum_{r=1}^{n} r + \frac{1}{n^3} \sum_{r=1}^{n} r^2 \right)
\]

\[
= \lim_{n \to \infty} \left(\frac{1}{n} \cdot n + \frac{2}{n^2} \cdot \frac{n(n+1)}{2} + \frac{1}{n^3} \cdot \frac{n(n+1)(2n+1)}{6} \right)
\]
\[= \lim_{n \to \infty} \left[1 + \left(1 + \frac{1}{n} \right) + \frac{(1+1/n)(2+1/n)}{6} \right] = \left[1 + 1 + \frac{(1)(2)}{6} \right] \]

\[: \int_{1}^{2} x^2 \, dx = \frac{7}{3} \]

Exercise 2.11

Evaluate the following integrals as the limit of the sum:

1. \(\int_{0}^{1} (x + 4) \, dx \)
2. \(\int_{1}^{3} x \, dx \)
3. \(\int_{1}^{3} (2x + 3) \, dx \)
4. \(\int_{0}^{1} x^2 \, dx \)

Exercise 2.12

Choose the correct answer:

1. \(\int \frac{1}{x^3} \, dx \) is
 (a) \(-\frac{3}{x^2} + c \) \quad (b) \(-\frac{1}{2x^2} + c \) \quad (c) \(-\frac{1}{3x^2} + c \) \quad (d) \(-\frac{2}{x^2} + c \)

2. \(\int 2^x \, dx \) is
 (a) \(2^x \log 2 + c \) \quad (b) \(2^x + c \) \quad (c) \(\frac{2^x}{\log 2} + c \) \quad (d) \(\frac{\log 2}{2^x} + c \)

3. \(\int \frac{\sin 2x}{2 \sin x} \, dx \) is
 (a) \(\sin x + c \) \quad (b) \(\frac{1}{2} \sin x + c \) \quad (c) \(\cos x + c \) \quad (d) \(\frac{1}{2} \cos x + c \)

4. \(\int \frac{\sin 5x - \sin x}{\cos 3x} \, dx \) is
 (a) \(-\cos 2x + c \) \quad (b) \(-\cos 2x + c \) \quad (c) \(-\frac{1}{4} \cos 2x + c \) \quad (d) \(-4 \cos 2x + c \)

5. \(\int \frac{\log x}{x} \, dx \), \(x > 0 \) is
 (a) \(\frac{1}{2} (\log x)^2 + c \) \quad (b) \(-\frac{1}{2} (\log x)^2 \) \quad (c) \(\frac{2}{x^2} + c \) \quad (d) \(\frac{2}{x^2} + c \)

6. \(\int \frac{e^x}{\sqrt{1 + e^x}} \, dx \) is
 (a) \(\frac{e^x}{\sqrt{1 + e^x}} + c \) \quad (b) \(2\sqrt{1 + e^x} + c \) \quad (c) \(\sqrt{1 + e^x} + c \) \quad (d) \(e^x \sqrt{1 + e^x} + c \)
7. \(\int \sqrt{e^x} \, dx \) is
 (a) \(\sqrt{e^x} + c \) (b) \(2\sqrt{e^x} + c \) (c) \(\frac{1}{2} \sqrt{e^x} + c \) (d) \(\frac{1}{2} \sqrt{e^x} + c \)
8. \(\int e^{2x}[2x^2 + 2x] \, dx \)
 (a) \(e^{2x}x^2 + c \) (b) \(xe^{2x} + c \) (c) \(2x^2e^x + c \) (d) \(\frac{x^2e^x}{2} + c \)
9. \(\int \frac{e^x}{e^x + 1} \, dx \) is
 (a) \(\log \left| \frac{e^x}{e^x + 1} \right| + c \) (b) \(\log \left| \frac{e^x + 1}{e^x} \right| + c \) (c) \(\log |e^x| + c \) (d) \(\log |e^x + 1| + c \)
10. \(\int \left[\frac{9}{x - 1} - \frac{1}{x + 1} \right] \, dx \) is
 (a) \(\log |x - 3| - \log |x + 1| + c \) (b) \(\log |x - 3| + \log |x + 1| + c \)
 (c) \(9\log |x - 3| - \log |x + 1| + c \) (d) \(9\log |x - 3| + \log |x + 1| + c \)
11. \(\int \frac{2x^3}{4 + x^4} \, dx \) is
 (a) \(\log |4 + x^4| + c \) (b) \(\frac{1}{2} \log |4 + x^4| + c \) (c) \(\frac{1}{4} \log |4 + x^4| + c \) (d) \(\log \left| \frac{2x^3}{4 + x^4} \right| + c \)
12. \(\int \frac{dx}{\sqrt{x^2 - 36}} \) is
 (a) \(\sqrt{x^2 - 36} + c \) (b) \(\log \left| x + \sqrt{x^2 - 36} \right| + c \)
 (c) \(\log \left| x - \sqrt{x^2 - 36} \right| + c \) (d) \(\log \left| x^2 + \sqrt{x^2 - 36} \right| + c \)
13. \(\int \frac{2x + 3}{\sqrt{x^2 + 3x + 2}} \, dx \) is
 (a) \(\sqrt{x^2 + 3x + 2} + c \) (b) \(2\sqrt{x^2 + 3x + 2} + c \)
 (c) \(\log \left(x^2 + 3x + 2 \right) + c \) (d) \(\frac{2}{3} \left(x^2 + 3x + 2 \right)^{\frac{3}{2}} + c \)
14. \(\int_0^1 (2x + 1) \, dx \)
 (a) 1 (b) 2 (c) 3 (d) 4
15. \(\int_2^4 \frac{dx}{x} \) is
 (a) \(\log 4 \) (b) 0 (c) \(\log 2 \) (d) \(\log 8 \)
16. \(\int_{0}^{\infty} e^{-2x} \, dx \) is
(a) 0 \hspace{1cm} (b) 1 \hspace{1cm} (c) 2 \hspace{1cm} (d) \frac{1}{2}

17. \(\int_{-1}^{1} x^3 e^{x^4} \, dx \) is
(a) 1 \hspace{1cm} (b) 2 \hspace{1cm} (c) 0 \hspace{1cm} (d) e^4

18. If \(f(x) \) is a continuous function and \(a < c < b \), then \(\int_{a}^{c} f(x) \, dx + \int_{c}^{b} f(x) \, dx \) is
(a) \(\int_{a}^{b} f(x) \, dx \) \hspace{1cm} (b) \(\int_{a}^{c} f(x) \, dx - \int_{c}^{b} f(x) \, dx \)
(c) \(\int_{a}^{c} f(x) \, dx \) \hspace{1cm} (d) 0

19. The value of \(\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos x \, dx \) is
(a) 0 \hspace{1cm} (b) 2 \hspace{1cm} (c) 1 \hspace{1cm} (d) 4

20. \(\int_{0}^{1} \sqrt{x^4(1-x)^2} \, dx \) is
(a) \(\frac{1}{12} \) \hspace{1cm} (b) \(-\frac{7}{12} \) \hspace{1cm} (c) \(\frac{7}{12} \) \hspace{1cm} (d) \(-\frac{1}{12} \)

21. If \(\int_{0}^{1} f(x) \, dx = 1 \), \(\int_{0}^{1} x \, f(x) \, dx = a \) and \(\int_{0}^{1} x^2 \, f(x) \, dx = a^2 \), then \(\int_{0}^{1} (a-x)^2 \, f(x) \, dx \) is
(a) \(4a^2 \) \hspace{1cm} (b) 0 \hspace{1cm} (c) \(2a^2 \) \hspace{1cm} (d) 1

22. The value of \(\int_{2}^{3} f(5-x) \, dx - \int_{2}^{3} f(x) \, dx \) is
(a) 1 \hspace{1cm} (b) 0 \hspace{1cm} (c) \(-1 \) \hspace{1cm} (d) 5

23. \(\int_{0}^{3} \left(\sqrt{x} + \frac{1}{\sqrt{x}} \right) \, dx \) is
(a) \(\frac{20}{3} \) \hspace{1cm} (b) \(\frac{21}{3} \) \hspace{1cm} (c) \(\frac{28}{3} \) \hspace{1cm} (d) \(\frac{1}{3} \)

24. \(\int_{0}^{\frac{\pi}{3}} \tan x \, dx \) is
(a) \log 2 \hspace{1cm} (b) 0 \hspace{1cm} (c) \log \sqrt{2} \hspace{1cm} (d) 2 \log 2
25. Using the factorial representation of the gamma function, which of the following is the solution for the gamma function $\Gamma(n)$ when $n = 8$

(a) 5040 (b) 5400 (c) 4500 (d) 5540

26. $\Gamma(n)$ is

(a) $(n-1)!$ (b) $n!$ (c) $n\Gamma(n)$ (d) $(n-1)\Gamma(n)$

27. $\Gamma(1)$ is

(a) 0 (b) 1 (c) n (d) $n!$

28. If $n > 0$, then $\Gamma(n)$ is

(a) $\int_{0}^{1} x^{n-1}e^{-x} \, dx$ (b) $\int_{0}^{1} x^{n} \, dx$ (c) $\int_{0}^{\infty} x^{-n}e^{-x} \, dx$ (d) $\int_{0}^{\infty} x^{n-1} \, dx$

29. $\Gamma\left(\frac{3}{2}\right)$

(a) $\sqrt{\pi}$ (b) $\frac{\sqrt{\pi}}{2}$ (c) $2\sqrt{\pi}$ (d) $\frac{3}{2}$

30. $\int_{0}^{\infty} x^{4}e^{-x} \, dx$ is

(a) 12 (b) 4 (c) 4! (d) 64

Miscellaneous problems

Evaluate the following integrals:

1. $\int \frac{1}{\sqrt{x+2} - \sqrt{x+3}} \, dx$
2. $\int \frac{dx}{2-3x-2x^2}$
3. $\int \frac{dx}{e^x + 6 + 5e^{-x}}$
4. $\int \sqrt{2x^2 - 3} \, dx$
5. $\int \sqrt[3]{9x^2 + 12x + 3} \, dx$
6. $\int (x+1)^2 \log x \, dx$
7. $\int \log\left(x - \sqrt{x^2 - 1}\right) \, dx$
8. $\int \frac{1}{\sqrt{x(x-1)}} \, dx$
9. $\int_{-1}^{x} e^{-2x} \, dx$
10. $\int_{0}^{\frac{3}{\sqrt{x+1 + \sqrt{5x+1}}} x \, dx}$
Summary

In this chapter, we have acquired the knowledge of

- **The relation between the Primitive function and the derived function:**
 A function $F(x)$ is said to be a primitive function of the derived function $f(x)$, if
 \[
 \frac{d}{dx} [F(x)] = f(x)
 \]

- **Integration of a function:**
 The process of determining an integral of a given function is defined as integration of a function

- **Properties of indefinite integrals:**

 1. $\int a f(x) \, dx = a \int f(x) \, dx$
 2. $\int [f(x) \pm g(x)] \, dx = \int f(x) \, dx \pm \int g(x) \, dx$

- **Standard results of indefinite integrals:**

 1. $\int x^n \, dx = \frac{x^{n+1}}{n+1} + c$
 2. $\int \frac{1}{x} \, dx = \log|x| + c$
 3. $\int e^x \, dx = e^x + c$
 4. $\int a^x \, dx = \frac{1}{\log a} a^x + c, a > 0$ and $a \neq 1$
 5. $\int \sin x \, dx = -\cos x + c$
 6. $\int \cos x \, dx = \sin x + c$
 7. $\int \sec^2 x \, dx = \tan x + c$
 8. $\int \csc^2 x \, dx = -\cot x + c$
 9. $\int [f(x)]^n f'(x) \, dx = \frac{[f(x)]^{n+1}}{n+1} + c, n \neq -1$
 10. $\int \frac{f'(x)}{f(x)} \, dx = \log |f(x)| + c$
 11. $\int \frac{f''(x)}{\sqrt{f(x)}} \, dx = 2\sqrt{f(x)} + c$
 12. $\int u dv = uv - \int v du$
 13. $\int u dv = uv - u'v_1 + u''v_2 - u'''v_3 + ...$
 14. $\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \log \left| \frac{a + x}{a - x} \right| + c$
 15. $\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \log \left| \frac{x - a}{x + a} \right| + c$
 16. $\int \frac{dx}{\sqrt{x^2 - a^2}} = \log \left| x + \sqrt{x^2 - a^2} \right| + c$
 17. $\int \frac{dx}{\sqrt{x^2 + a^2}} = \log \left| x + \sqrt{x^2 + a^2} \right| + c$
 18. $\int e^x \left[f(x) + f'(x) \right] \, dx = e^x f(x) + c$
 19. $\int e^{ax} \left[af(x) + f'(x) \right] \, dx = e^{ax} f(x) + c$
 20. $\int \sqrt{x^2 - a^2} \, dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \log \left| x + \sqrt{x^2 - a^2} \right| + c$
 21. $\int \sqrt{x^2 + a^2} \, dx = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \log \left| x + \sqrt{x^2 + a^2} \right| + c$
Definite integral:
Let \(f(x) \) be a continuous function on \([a,b]\) and if \(F(x) \) is anti derivative of \(f(x) \), then \(\int_{a}^{b} f(x) \, dx = F(b) - F(a) \).

Properties of definite integrals:
(i) \(\int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(t) \, dt \)
(ii) \(\int_{a}^{b} f(x) \, dx = -\int_{a}^{b} f(x) \, dx \)
(iii) \(\int_{a}^{b} [f(x) \pm g(x)] \, dx = \int_{a}^{b} f(x) \, dx \pm \int_{a}^{b} g(x) \, dx \)
(iv) \(\int_{a}^{b} f(x) \, dx = \int_{c}^{b} f(x) \, dx + \int_{a}^{c} f(x) \, dx \)
(v) \(\int_{0}^{b} f(x) \, dx = \int_{0}^{a} f(a-x) \, dx \)
(vi) \(\int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a+b-x) \, dx \)
(vii) \(a) \) If \(f(x) \) is an even function, then \(\int_{-a}^{a} f(x) \, dx = 2 \int_{0}^{a} f(x) \, dx \)
\(b) \) If \(f(x) \) is an odd function, then \(\int_{-a}^{a} f(x) \, dx = 0 \)

Particular case of Gamma Integral:
If \(n \) is a positive integer, then \(\int_{0}^{\infty} x^n e^{-ax} \, dx = \frac{n!}{a^{n+1}} \)

Properties of gamma function:
(i) \(\Gamma(n) = (n-1)\Gamma(n-1), n > 1 \)
(ii) \(\Gamma(n+1) = n\Gamma(n), n > 0 \)
(iii) \(\Gamma(n+1) = n!, n \) is a positive integer
(iv) \(\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi} \)

Definite integral as the limit of a sum:
Let \(f(x) \) be a continuous real valued function in \([a,b]\), which is divided into \(n \) equal parts each of width \(h \), then
\(\int_{a}^{b} f(x) \, dx = \lim_{n \to \infty} \sum_{r=1}^{n} h f(a + rh) \) where \(h = \frac{b-a}{n} \)

Results:
(i) \(1 + 2 + 3 + \ldots + n = \frac{n(n+1)}{2} = \sum_{r=1}^{n} r \)
(ii) \(1^2 + 2^2 + 3^2 + \ldots + n^2 = \frac{n(n+1)(2n+1)}{6} = \sum_{r=1}^{n} r^2 \)
(iii) \(1^3 + 2^3 + 3^3 + \ldots + n^3 = \left[\frac{n(n+1)}{2} \right]^2 = \sum_{r=1}^{n} r^3 \)
<table>
<thead>
<tr>
<th>Glossary</th>
<th>Tamil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abscissa</td>
<td>மட்டாயம் / கிட் தூரம்</td>
</tr>
<tr>
<td>Abstract value</td>
<td>நுணம மதிப்பு / புலனடாகடாத மதிப்பு</td>
</tr>
<tr>
<td>Algebraic function</td>
<td>அறமச் சடார்பு / இயற்கணிதச் சடார்பு</td>
</tr>
<tr>
<td>Anti derivative</td>
<td>எதிர்மடற வடகயீடு</td>
</tr>
<tr>
<td>Approaches</td>
<td>அடுக்குகுறிச் சடார்பு / அடுக்குகுறிச் சடார்பு</td>
</tr>
<tr>
<td>Approximate</td>
<td>உயர்வடாகம்</td>
</tr>
<tr>
<td>Arbitrary</td>
<td>முடித்துவர்க்கும் / கணத்துவர்க்கும்</td>
</tr>
<tr>
<td>Between the specified limits</td>
<td>குறிப்பிட்டப் பட்சத்தியங்களுக்குள்</td>
</tr>
<tr>
<td>Bounded region</td>
<td>வரம்புள்்ள பகுதி</td>
</tr>
<tr>
<td>Certain</td>
<td>உறுதியடான / உறுதியடான</td>
</tr>
<tr>
<td>Change of variable</td>
<td>மாற்றிகள் மாற்று</td>
</tr>
<tr>
<td>Closed interval</td>
<td>முற்றில் இட்நவளி</td>
</tr>
<tr>
<td>Completing the square</td>
<td>தோர் தோர்நலம்</td>
</tr>
<tr>
<td>Concept</td>
<td>கருத்துரு</td>
</tr>
<tr>
<td>Constant of integration</td>
<td>நடடாடகயில் மாற்று</td>
</tr>
<tr>
<td>Constant term</td>
<td>மூலக் முழும்</td>
</tr>
<tr>
<td>Continuous function</td>
<td>நிச்சயமடான சடார்பு</td>
</tr>
<tr>
<td>Decomposition</td>
<td>பிரித்தல் / கூறடாக்கல்</td>
</tr>
<tr>
<td>Definite integral</td>
<td>வடரயறுத்த நடடாடக / வடரயறுத்த நடடாடகயீடு</td>
</tr>
<tr>
<td>Derived function</td>
<td>அறுக்குறிச் சடார்பு</td>
</tr>
<tr>
<td>Differentiable function</td>
<td>வடகக்நகழு / வடகயீடடு நகழு</td>
</tr>
<tr>
<td>Differential coefficient</td>
<td>வடகக்குறி / வடகக்குறி குறி</td>
</tr>
<tr>
<td>Differentiation</td>
<td>வடகக்குறி</td>
</tr>
<tr>
<td>Directly integrate</td>
<td>தெரிட்யடாக நடடாடகயி்</td>
</tr>
<tr>
<td>Exponential function</td>
<td>அடுக்குகுறி மாற்று / அடுக்குகுறி மாற்று</td>
</tr>
<tr>
<td>Family of curves</td>
<td>வட்ளவடரகளின் நடடாகுதி</td>
</tr>
<tr>
<td>Indefinite integral</td>
<td>வடரயறுத்த நடடாடக / வடரயறுத்த நடடாடகயீடு</td>
</tr>
<tr>
<td>Infinity</td>
<td>புலவாய் / குறகது / எணணிலி</td>
</tr>
<tr>
<td>Inscribe</td>
<td>உள்வடா</td>
</tr>
<tr>
<td>Instantaneous</td>
<td>உண்மையானமாக</td>
</tr>
<tr>
<td>Integrable function</td>
<td>எதிர்மடற வடகயீடு</td>
</tr>
<tr>
<td>Integral</td>
<td>நடடாடக / நடடாடகயீடு</td>
</tr>
<tr>
<td>Integrand</td>
<td>வடரயறுத்த நடடாடக / வடரயறுத்த நடடாடகயீடு</td>
</tr>
<tr>
<td>Integrate</td>
<td>வடரயறுத்த நடடாடக / வடரயறுத்த நடடாடகயீடு</td>
</tr>
<tr>
<td>Integration</td>
<td>வடரயறுத்த நடடாடக</td>
</tr>
<tr>
<td>Integration by parts</td>
<td>பகுதிக்குறி எதிர்மடற வடகயீடு / பகுதிக்குறி எதிர்மடற வடகயீடு</td>
</tr>
<tr>
<td>Integration by substitution</td>
<td>எதிர்மடற வடகயீடு எதிர்மடற வடகயீடு</td>
</tr>
</tbody>
</table>

Integral Calculus – I
<table>
<thead>
<tr>
<th>Integrator</th>
<th>இணையப்படக சான்று</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inverse trigonometric function</td>
<td>வெளிய மாற்றமான மாற்று / வெளிய மணிக்கோளியுள்ள மாற்று</td>
</tr>
<tr>
<td>Logarithmic function</td>
<td>லக்னேல் மாற்று</td>
</tr>
<tr>
<td>Lower limit</td>
<td>கீழ் எல்டல்</td>
</tr>
<tr>
<td>Marginal function</td>
<td>இறுதிநிடலச் சான்று</td>
</tr>
<tr>
<td>Natural logarithm</td>
<td>இயல் மக்கள்</td>
</tr>
<tr>
<td>Open interval</td>
<td>இடம்படை இட்டடாணம்</td>
</tr>
<tr>
<td>Ordinate</td>
<td>குத்தடாயம் / நிடலத் தூரம்</td>
</tr>
<tr>
<td>Parallel tangents</td>
<td>இணைய இணையகாண்டு காண்டு</td>
</tr>
<tr>
<td>Partial fraction</td>
<td>பகுதிப் பின்னம்</td>
</tr>
<tr>
<td>Positive integer</td>
<td>மிடக்க முழு எண்</td>
</tr>
<tr>
<td>Power rule</td>
<td>அடுக்கு விதி</td>
</tr>
<tr>
<td>Primitive function</td>
<td>முன்னைய மாற்று / முன்னைய மணிக்கோள் மாற்று</td>
</tr>
<tr>
<td>Quantity</td>
<td>அளவு / ஆற்றம்</td>
</tr>
<tr>
<td>Rationalisation method</td>
<td>கணித்தல் முறுண்டு செயல்</td>
</tr>
<tr>
<td>Reduction</td>
<td>குருக்கம் / குணகம்</td>
</tr>
<tr>
<td>Repeated integral</td>
<td>முதல்முதல் மறுமலர் மீண்டும் மீண்டும் நடட்டடகயிப் பட்</td>
</tr>
<tr>
<td>Reverse process</td>
<td>எதிர் மடற நசயல்</td>
</tr>
<tr>
<td>Standard form</td>
<td>திட்ட வடிவம்</td>
</tr>
<tr>
<td>Substitution</td>
<td>பிராந்திய பிரதியில் / ஈடு நசயதல்</td>
</tr>
<tr>
<td>Successive</td>
<td>அடுத்தடுத்த / நூற்றாண்டு காண்டு</td>
</tr>
<tr>
<td>Successive derivatives</td>
<td>அடுத்தடுத்த முறையில் / அடுத்தடுத்த வடகயில் முறையில்</td>
</tr>
<tr>
<td>Suitable</td>
<td>வழக்கமல்ல / விளக்கமல்ல காண்டு</td>
</tr>
<tr>
<td>Summation</td>
<td>கூட்ல் / கூட்டு நூற்றாண்டு காண்டு</td>
</tr>
<tr>
<td>Technique</td>
<td>உத்தி / நுட்பம்</td>
</tr>
<tr>
<td>Trigonometric function</td>
<td>முக்தகடாண கணிப்பு சான்று / திரிதகடாணமிதிச்சான்று</td>
</tr>
<tr>
<td>Unique function</td>
<td>ஒருப் படான நகடாண் சான்று</td>
</tr>
<tr>
<td>Upper limit</td>
<td>மீட் எல்டல்</td>
</tr>
<tr>
<td>Variable of integration</td>
<td>இணையகாண்டு மாற்று</td>
</tr>
</tbody>
</table>
ICT Corner

Expected Result is shown in this picture

Step – 1: Open the Browser, type the URL Link given below (or) Scan the QR Code. GeoGebra workbook named “12th Standard Business Mathematics” will open. In the work book there are two Volumes. Select “Volume-1”.

Step – 2: Select the worksheet named “Integration-Gamma Integral”. There is a problem based on Gamma Integral and Improper definite Integral. Move the sliders to change “a” and “n” value. Observe the graph.

Browse in the link

12th standard Business Mathematics :https://ggbm.at/uzkernwr or Scan the QR Code.
Introduction

History of integration begins over 2500 years ago. The first Greek Mathematician Antiphon (around 430 BC(BCE)) introduced the “method of exhaustion” to find areas of simple polygons and more complicated curves. (method of exhaustion means dividing the given area into infinite number of triangles). Though Antiphon invented the method of exhaustion to find area bounded by complicated curves, the mathematician Eudoxus did the logical development in this method of exhaustion. Later Euclid used this method to calculate the area of circle.

Using the same method of exhaustion Archimedes (287 BC(BCE)-217 BC(BCE)) find the area bounded by parabola. Thus using integration area bounded by curves is developed. We will see the method of finding area by using integration in this chapter.

Learning Objectives

After studying this chapter, the students will be able to understand

- the geometrical interpretation of definite integral.
- the applications of integration in finding the area bounded by a curve.
- the concept of consumer’s & producer’s surplus.
- the applications of integration in Economics and Commerce.

3.1 The area of the region bounded by the curves

Using integration we can evaluate the area bounded by the curves with coordinate axes. We can also calculate the area between two given curves.
3.1.1 Geometrical Interpretation of Definite Integral as Area under a curve:

Suppose we want to find out the area of the region which is bounded above by a curve \(y = f(x) \), below by the \(x-\text{axis} \) and the lines \(x = a \) and \(x = b \).

Now from Fig 3.1 let the interval \([a, b]\) is divided into \(n \) subintervals \([x_{i-1}, x_i]\) of equal length \(\Delta x_i \) \(i.e. \) \(x_i - x_{i-1} = \Delta x_i \) for any \(x_i' \in [x_{i-1}, x_i] \) let \(f(x_i') \) be the height of \(n \) rectangles having \(x_i - x_{i-1} = \Delta x_i \) as its base. Then area \(A_i = \Delta x_i f(x_i') \). Now the total area \(A = \sum_{i=1}^{n} f(x_i') \Delta x_i \)

Now from the definition of definite integral, if \(f(x) \) is a function defined on \([a,b]\) with \(a < b \) then the definite integral is

\[
\int_{a}^{b} f(x) \, dx = \lim_{\Delta x_i \to 0} \sum_{i=1}^{n} f(x_i') \Delta x_i
\]

The area under the curve is exhausted by increasing the number of rectangular strips to \(\infty \)

Thus the geometrical interpretation of definite integral is the area under the curve between the given limits.

The area of the region bounded by the curve \(y=f(x) \), with \(x-\text{axis} \) and the ordinates at \(x = a \) and \(x = b \) given by

Area \(A = \int_{a}^{b} y \, dx = \int_{a}^{b} f(x) \, dx \)
Area between two curves

Let \(f(x) \) and \(g(x) \) be two continuous functions defined on \(x \) in the interval \([a, b]\). Also \(f(x) > g(x), a \leq b \)

Then the area between these two curves from \(x = a \) to \(x = b \), is

\[
A = \int_{a}^{b} [f(x) - g(x)] \, dx.
\]

Example 3.1

Find the area bounded by \(y = 4x + 3 \) with \(x \)-axis between the lines \(x = 1 \) and \(x = 4 \)
Solution:

\[
\text{Area} = \int_1^4 y \, dx \\
= \int_1^4 (4x + 3) \, dx \\
= \left[2x^2 + 3x \right]_1^4 = 32 + 12 - 2 - 3 \\
= 39 \text{ sq.units}
\]

Example 3.2

Find the area of the region bounded by the line \(x - 2y - 12 = 0 \), the y-axis and the lines \(y = 2, y = 5 \).

Solution:

\[
x - 2y - 12 = 0 \\
x = 2y + 12
\]

Required Area

\[
\int_2^5 x \, dy \\
= \int_2^5 (2y + 12) \, dy = \left[y^2 + 12y \right]_2^5 \\
= (25 + 60) - (4 + 24) = 57 \text{ sq.units}
\]

Example 3.3

Find the area of the region bounded by the parabola \(y = 4 - x^2 \), x-axis and the lines \(x = 0, x = 2 \).

Solutions:

\[
y = 4 - x^2
\]

Required area

\[
= \int_0^2 y \, dx = \int_0^2 (4 - x^2) \, dx \\
= \left[4x - \frac{x^3}{3} \right]_0^2 = 8 - \frac{8}{3} \\
= \frac{16}{3} \text{ sq.units}
\]
Example 3.4

Find the area bounded by \(y = x \) between the lines \(x = -1 \) and \(x = 2 \) with \(x \)-axis.

Solution:

Required area = \(\int_{-1}^{0} (-x) \, dx + \int_{0}^{2} x \, dx \)

\[
= \left[-\frac{x^2}{2} \right]_{-1}^{0} + \left[\frac{x^2}{2} \right]_{0}^{2} = \left[0 - \frac{1}{2} \right] + \left[\frac{4}{2} - 0 \right] = \frac{5}{2} \text{ sq.units}
\]

Example 3.5

Find the area of the parabola \(y^2 = 8x \) bounded by its latus rectum.

Solution

\(y^2 = 8x \) \hspace{1cm} (1)

Comparing this with the standard form \(y^2 = 4ax \),

\[\begin{aligned}
4a &= 8 \\
\Rightarrow a &= 2
\end{aligned} \]

Equation of latus rectum is \(x = 2 \)

Since equation (1) is symmetrical about \(x \)-axis

Required Area = \(2 \left[\text{Area in the first quadrant between the limits } x = 0 \text{ and } x = 2 \right] \)

\[
= 2 \int_{0}^{2} y \, dx \\
= 2 \int_{0}^{2} \sqrt{8x} \, dx = 2(2\sqrt{2}) \int_{0}^{2} x^{1/2} \, dx \\
= 4\sqrt{2} \left[\frac{2x^{3/2}}{3} \right]_{0}^{2} = 4\sqrt{2} \times 2 \times \frac{2^3}{3} = \frac{32}{3} \text{ sq. units.}
\]
Example 3.6

Sketch the graph \(y = |x + 3| \) and evaluate \(\int_{-6}^{0} |x + 3| \, dx \).

Solution:

\[
y = |x + 3| = \begin{cases}
 x + 3 & \text{if } x \geq -3 \\
 -(x + 3) & \text{if } x < -3
\end{cases}
\]

Required area = \(\int_{-6}^{0} y \, dx \)

\[
= \int_{-6}^{-3} (-x - 3) \, dx + \int_{-3}^{0} (x + 3) \, dx
\]

\[
= \left[\frac{(x + 3)^2}{2} \right]_{-3}^{-6} + \left[\frac{(x + 3)^2}{2} \right]_{-3}^{0}
\]

\[
= - \left[\frac{(x + 3)^2}{2} \right]_{-3}^{-6} + \left[\frac{(x + 3)^2}{2} \right]_{-3}^{0} = - \left[0 \frac{9}{2} \right] + \left[\frac{9}{2} - 0 \right] = 9 \text{ sq. units}
\]

Example 3.7

Using integration find the area of the circle whose center is at the origin and the radius is \(a \) units.

Solution

Equation of the required circle is \(x^2 + y^2 = a^2 \) (1)

\[
\text{put } y = 0, \quad x^2 = a^2 \\
\Rightarrow \quad x = \pm a
\]

Since equation (1) is symmetrical about both the axes

The required area = 4 [Area in the first quadrant between the limit 0 and \(a \).]

\[
= 4 \int_{0}^{a} y \, dx
\]

\[
= 4 \int_{0}^{a} \sqrt{a^2 - x^2} \, dx = 4 \left[\frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \frac{x}{a} \right]_{0}^{a}
\]

\[
= 4 \left[\frac{a^2}{2} \sin^{-1} \left(\frac{a}{a} \right) \right] = 4 \left(\frac{a^2}{2} \sin^{-1}(1) \right) = 4 \frac{a^2 \pi}{2}
\]

\[
= \pi a^2 \text{ sq. units}
\]
Example 3.8

Using integration find the area of the region bounded between the line \(x = 4 \) and the parabola \(y^2 = 16x \).

Solution:
The equation \(y^2 = 16x \) represents a parabola (Open rightward)

Required Area = \(2 \int_{a}^{b} y \, dx \)

\[= 2 \int_{0}^{4} \sqrt{16x} \, dx \]

\[= 8 \int_{0}^{4} x^{\frac{1}{2}} \, dx = 8 \left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}} \right]_{0}^{4} = \frac{16}{3} \left(\frac{3}{2} \right)^{3} = \frac{128}{3} \text{ sq. units} \]

Exercise 3.1

1. Using Integration, find the area of the region bounded the line \(2y + x = 8 \), the \(x \) axis and the lines \(x = 2 \), \(x = 4 \).

2. Find the area bounded by the lines \(y - 2x - 4 = 0, y = 1, y = 3 \) and the \(y \)-axis

3. Calculate the area bounded by the parabola \(y^2 = 4ax \) and its latusrectum.

4. Find the area bounded by the line \(y = x \), the \(x \)-axis and the ordinates \(x = 1 \), \(x = 2 \).

5. Using integration, find the area of the region bounded by the line \(y - 1 = x, \text{the} \ x \text{axis} \) and the ordinates \(x = -2, x = 3 \).

6. Find the area of the region lying in the first quadrant bounded by the region \(y = 4x^2, x = 0, y = 0 \) and \(y = 4 \).

7. Find the area bounded by the curve \(y = x^2 \) and the line \(y = 4 \)

3.2 Application of Integration in Economics and Commerce.

Integration helps us to find out the total cost function and total revenue function from the marginal cost. It is possible to find out consumer's surplus and producer's surplus from the demand and supply function. Cost and revenue functions are calculated through indefinite integral.
We learnt already that the marginal function is obtained by differentiating the total cost function. Now we shall obtain the total cost function when marginal cost function is given, by integration.

3.2.1 Cost functions from marginal cost functions

If C is the cost of producing an output x, then marginal cost function $MC = \frac{dc}{dx}$. Using integration, as the reverse process of differentiation, we obtain,

$$
C = \int (MC) \, dx + k
$$

Where k is the constant of integration which is to be evaluated,

Average cost function $AC = \frac{C}{x}$, $x \neq 0$

Example 3.9

The marginal cost function of manufacturing x shoes is $6 + 10x - 6x^2$. The cost producing a pair of shoes is ₹12. Find the total and average cost function.

Solution:

Given,

Marginal cost $MC = 6 + 10x - 6x^2$

$$
C = \int MC \, dx + k
= \int (6 + 10x - 6x^2) \, dx + k
= 6x + 5x^2 - 2x^3 + k
$$

(1)

when $x = 2$, $C = 12$ (given)

$$
12 = 12 + 20 - 16 + k
$$

$$
[k = -4]
$$

$$
C = 6x + 5x^2 - 2x^3 - 4
$$

$$
\text{Average cost} = \frac{C}{x} = \frac{6x + 5x^2 - 2x^3 - 4}{x}
= 6 + 5x - 2x^2 - \frac{4}{x}
$$
Example 3.10

A company has determined that the marginal cost function for a product of a particular commodity is given by \(MC = 125 + 10x - \frac{x^2}{9} \) where C rupees is the cost of producing \(x \) units of the commodity. If the fixed cost is ₹250 what is the cost of producing 15 units.

Solution:

\[
MC = 125 + 10x - \frac{x^2}{9}
\]

\[
C = \int MC \, dx + k
\]

\[
= \int \left(125 + 10x - \frac{x^2}{9} \right) \, dx + k
\]

\[
= 125x + 5x^2 - \frac{x^3}{27} + k
\]

Fixed cost \(k = 250 \)

\[
C = 125x + 5x^2 - \frac{x^3}{27} + 250
\]

When \(x = 15 \)

\[
C = 125 \cdot 15 + 5 \cdot (15)^2 - \frac{(15)^3}{27} + 250
\]

\[
= 1875 + 1125 - 125 + 250
\]

\[
C = ₹3,125
\]

Example 3.11

The marginal cost function \(MC = 2 + 5e^x \) (i) Find \(C \) if \(C(0) = 100 \) (ii) Find \(AC \).

Solution:

Given \(MC = 2 + 5e^x \)

\[
C = \int MC \, dx + k
\]

\[
= \int (2 + 5e^x) \, dx + k
\]

\[
= 2x + 5e^x + k
\]

\(x = 0 \Rightarrow C = 100 \),

\[
100 = 2(0) + 5(e^0) + k
\]

\[
k = 95
\]
\[C = 2x + 5e^x + 95. \]

Average cost \[AC = \frac{C}{x} = \frac{2x + 5e^x + 95}{x} \]

Rate of growth or sale

If the rate of growth or sale of a function is a known function of \(t \) say \(f(t) \) where \(t \) is a time measure, then total growth (or) sale of a product over a time period \(t \) is given by,

\[\text{Total sale} = \int_0^t f(t) \, dt, \quad 0 \leq t \leq r \]

Example 3.12

The rate of new product is given by \(f(x) = 100 - 90e^{-x} \) where \(x \) is the number of days the product is on the market. Find the total sale during the first four days. \((e^{-4}=0.018)\)

Solution:

\[\text{Total sale} = \int_0^4 (100 - 90e^{-x}) \, dx \]
\[= \left[100x + 90e^{-x} \right]_0^4 \]
\[= 400 + 90e^{-4} - (0 + 90) \]
\[= 400 + 90(0.018) - 90 \]
\[= 311.62 \text{ units} \]

Example 3.13

A company produces 50,000 units per week with 200 workers. The rate of change of productions with respect to the change in the number of additional labour \(x \) is represented as \(300 - 5x^{\frac{2}{3}} \). If 64 additional labours are employed, find out the additional number of units, the company can produce.

Solution:

Let \(p \) be the additional product produced for additional of \(x \) labour,

\[\frac{dp}{dx} = 300 - 5x^{\frac{2}{3}} \]
\[
p = \int_{0}^{64} \left(300 - 5x^3 \right) dx
\]

\[
= \left[300x - 3x^4 \right]_{0}^{564}
\]

\[
= 300 \times 64 - 3(64)^{5/3}
\]

\[
= 16128
\]

\[\therefore \text{The number of additional units produced } 16128\]

Total number of units produced by 264 workers

\[
= 50,000 + 16,128 = 66128 \text{ units}
\]

Example 3.14

The rate of change of sales of a company after an advertisement campaign is represented as, \(f(t) = 3000e^{-0.3t}\) where \(t\) represents the number of months after the advertisement. Find out the total cumulative sales after 4 months and the sales during the fifth month. Also find out the total sales due to the advertisement campaign \([e^{-1.2} = 0.3012, e^{-1.5} = 0.2231]\).

Solution:

Assume that \(F(t)\) is the total sales after \(t\) months, sales rate is \(\frac{d}{dt} F(t) = f(t)\)

\[\therefore F(t) = \int_{0}^{t} f(t)dt\]

Total cumulative sales after 4 months.

\[
F(4) = \int_{0}^{4} f(t)dt
\]

\[
= \int_{0}^{4} 3000e^{-0.3t} dt
\]

\[
= 3000 \left[\frac{e^{-0.3t}}{-0.3} \right]_{0}^{4}
\]

\[
= -10,000 \left[e^{-1.2} - e^{0} \right]
\]

\[
= -10,000 \left[0.3012 - 1 \right]
\]

\[
= 6988 \text{ units}
\]
(ii) Sales during the 5th month = \[\int_4^5 3000 e^{-0.3t} \, dt \]
\[= 3000 \left[\frac{e^{-0.3t}}{-0.3} \right]_4^5 \]
\[= -10,000 \left[e^{-1.5} - e^{-1.2} \right] \]
\[= -10,000 \left[0.2231 - 0.3012 \right] \]
\[= 781 \text{ units} \]

Total sales due to the advertisement campaign.
\[= \int_0^\infty 3000 e^{-0.3t} \, dt = 3000 \left[\frac{e^{-0.3t}}{-0.3} \right]_0^\infty \]
\[= -10000 \left[0 - 1 \right] \]
\[= 10,000 \text{ units} \]

Example 3.15

The price of a machine is 6,40,000 if the rate of cost saving is represented by the function \(f(t) = 20,000 \, t \). Find out the number of years required to recoup the cost of the function.

Solution:

Saving Cost \(S(t) = \int_0^t 20000t \, dt \)
\[= 10000 \, t^2 \]

To recoup the total price,

\[10000 \, t^2 = 640000 \]
\[t^2 = 64 \]
\[t = 8 \]

When \(t = 8 \) years, one can recoup the price.

3.2.2 Revenue functions from Marginal revenue functions

If \(R \) is the total revenue function when the output is \(x \), then marginal revenue \(MR = \frac{dR}{dx} \). Integrating with respect to ‘\(x\)’ we get

Revenue Function, \(R = \int (MR) \, dx + k. \)
Where ‘k’ is the constant of integration which can be evaluated under given conditions, when \(x = 0 \), the total revenue \(R = 0 \),

Demand Function, \(P = \frac{R}{x}, \quad x \neq 0 \).

Example 3.16

For the marginal revenue function \(MR = 35 + 7x - 3x^2 \), find the revenue function and demand function.

Solution:

Given \(MR = 35 + 7x - 3x^2 \)

\[
R = \int (MR) \, dx + k
\]

\[
= \int (35 + 7x - 3x^2) \, dx + k
\]

\[
R = 35x + \frac{7}{2}x^2 - x^3 + k
\]

Since \(R = 0 \) when \(x = 0 \), \(k = 0 \)

\[
R = 35x + \frac{7}{2}x^2 - x^3
\]

Demand function \(P = \frac{R}{x} \)

\[
P = 35 + \frac{7}{2}x - x^2.
\]

Example 3.17

A firm has the marginal revenue function given by \(MR = \frac{a}{(x+b)^2} - c \) where \(x \) is the output and \(a, b, c \) are constants. Show that the demand function is given by \(x = \frac{a}{b (p+c)} - b \).

Solution:

Given \(MR = \frac{a}{(x+b)^2} - c \)

\[
R = \int a(x+b)^{-2} \, dx - c \int dx
\]

\[
R = \frac{a(x+b)^{-1}}{-1} - cx + k
\]

\[
R = -\frac{a}{x+b} - cx + k
\]

When \(x = 0, \ R = 0 \)
\[
\therefore \quad 0 = -\frac{a}{b} - c(0) + k
\]

\[
k = \frac{a}{b}
\]

\[
R = -\frac{a}{x+b} - cx + \frac{a}{b}
\]

\[
= -ab + a \left(\frac{x+b}{b(x+b)}\right) - cx
\]

\[
R = \frac{ax}{b(x+b)} - cx
\]

Demand function

\[
P = \frac{R}{x}
\]

\[
P = \frac{a}{b(x+b)} - c
\]

\[
P+c = \frac{a}{b(x+b)}
\]

\[
b(x+b) = \frac{a}{P+c}
\]

\[
x = \frac{a}{b(P+c)} - b.
\]

To find the Maximum Profit if Marginal Revenue and Marginal cost function are given:

If \(P'\) denotes the profit function, then

\[
\frac{dP}{dx} = \frac{d}{dx}(R - C) = \frac{dR}{dx} - \frac{dC}{dx} = MR - MC
\]

Integrating both sides with respect to \(x\) gives,

\[P = \int (MR - MC)\, dx + k\]

Where \(k\) is the constant of integration. However, if we are given additional information, such as fixed cost or loss at zero level of output, we can determine the constant \(k\). Once \(P\) is known, it can be maximum by using the concept of maxima and minima.

Example 3.18

The marginal cost \(C'(x)\) and marginal revenue \(R'(x)\) are given by \(C'(x) = 50 + \frac{x}{50}\) and \(R'(x) = 60\). The fixed cost is \(¥200\). Determine the maximum profit.

Solution:

Given

\[
C(x) = \int C'(x)\, dx + k_1
\]
\[
C(x) = 50x + \frac{x^2}{100} + k_1
\]

When quantity produced is zero, then the fixed cost is 200.

i.e. When \(x = 0 \), \(C = 200 \)

\[\Rightarrow k_1 = 200 \]

Cost function is

\[C(x) = 50x + \frac{x^2}{100} + 200 \quad (1) \]

The Revenue

\[R'(x) = 60 \]

\[R(x) = \int R'(x) \, dx + k_2 \]

\[= \int 60 \, dx + k_2 \]

\[= 60x + k_2 \]

When no product is sold, revenue = 0

i.e. When \(x = 0 \), \(R = 0 \).

Revenue

\[R(x) = 60x \quad (2) \]

Profit

\[P = \text{Total Revenue} - \text{Total cost} \]

\[= 60x - 50x - \frac{x^2}{100} - 200 \]

\[= 10x - \frac{x^2}{100} - 200 \]

\[\frac{dp}{dx} = 10 - \frac{x}{50} \]

To get profit maximum,

\[\frac{dp}{dx} = 0 \quad \Rightarrow \quad x = 500. \]

\[\frac{d^2P}{dx^2} = \frac{-1}{50} < 0 \]

\[\therefore \quad \text{Profit is maximum when } x = 500 \text{ and} \]

Maximum Profit is

\[P = 10(500) - \left(\frac{500}{100}\right)^2 - 200 \]
Example 3.19

The marginal cost and marginal revenue with respect to commodity of a firm are given by \(C'(x) = 8 + 6x \) and \(R'(x) = 24 \). Find the total Profit given that the total cost at zero output is zero.

Solution:

Given \(MC = 8 + 6x \)

\[
C(x) = \int (8 + 6x) \, dx + k_1
\]

\[
= 8x + 3x^2 + k_1 \quad (1)
\]

But given when \(x = 0, C = 0 \) \(\Rightarrow k_1 = 0 \)

\(\therefore C(x) = 8x + 3x^2 \) \((2) \)

Given that \(MR = 24 \)

\[
R(x) = \int MR \, dx + k_2
\]

\[
= \int 24 \, dx + k_2
\]

\[
= 24x + k_2
\]

Revenue = 0, when \(x = 0 \) \(\Rightarrow k_2 = 0 \)

\(R(x) = 24x \) \((3) \)

Total Profit functions \(P(x) = R(x) - C(x) \)

\[
P(x) = 24x - 8x - 3x^2
\]

\[
= 16x - 3x^2
\]

Example 3.20

The marginal revenue function (in thousand of rupees) of a commodity is \(10 + 0.05e^{-0.05x} \). Where \(x \) is the number of units sold. Find the total revenue from the sale of 100 units \((e^{-5} = 0.0067) \)
Solution:

Given, Marginal revenue \(R'(x) = 10 + e^{-0.05x} \)

Total revenue from sale of 100 units is
\[
R = \int_{0}^{100} \left(10 + e^{-0.05x}\right) dx
\]
\[
= \left[10x + \frac{e^{-0.05x}}{-0.05} \right]_{0}^{100}
\]
\[
= \left(1000 - \frac{e^{-5}}{0.05} \right) - \left(0 - \frac{100}{5} \right)
\]
\[
= 1000 + 20 - (20 \times 0.0067)
\]
\[
= 1019.87
\]

Total revenue = 1019.87 \times 1000
\[
= \text{₹}10,19,870
\]

Example 3.21

The price of a machine is ₹5,00,000 with an estimated life of 12 years. The estimated salvage value is ₹30,000. The machine can be rented at ₹72,000 per year. The present value of the rental payment is calculated at 9\% interest rate. Find out whether it is advisable to rent the machine. \(e^{-1.08} = 0.3396 \).

Solution:

The present value of payment for \(t \) year = \(\int_{0}^{t} 72000e^{-0.09t} \, dt \)

Present value of 12 years = \(\int_{0}^{12} 72000e^{-0.09t} \, dt \)
\[
= 72000 \left[\frac{e^{-0.09t}}{-0.09} \right]_{0}^{12}
\]
\[
= \frac{72000}{-0.09} \left[e^{-0.09(12)} - e^{0} \right]
\]
\[
= -\frac{8,00,000}{-0.09} \left[e^{-1.08} - 1 \right]
\]
\[
= 8,00,000 \left[0.3396 - 1 \right]
\]
\[
= 5,28,320
\]

Cost of the machine = 5, 00, 000 - 30, 000
Hence it is not advisable to rent the machine
It is better to buy the machine.

Inventory:

Given the inventory on hand \(I(x) \) and the unit holding cost \((C_1) \), the total inventory carrying cost is \(C_1 \int_0^T I(x) \, dx \), where \(T \) is the time period under consideration.

Example 3.22

A company receives a shipment of 200 cars every 30 days. From experience it is known that the inventory on hand is related to the number of days. Since the last shipment, \(I(x) = 200 - 0.2x \). Find the daily holding cost for maintaining inventory for 30 days if the daily holding cost is ₹3.5

Solution:

Here \(I(x) = 200 - 0.2x \)

\(C_1 = ₹3.5 \)

\(T = 30 \)

Total inventory carrying cost = \(C_1 \int_0^T I(x) \, dx = 3.5 \int_0^{30} (200 - 0.2x) \, dx \)

= \(3.5 \left(200x - \frac{0.2x^2}{2} \right)_0^{30} = 20,685 \)

Amount of an Annuity

The amount of an annuity is the sum of all payments made plus all interest accumulated. Let an annuity consist of equal payments of Rs. \(p \) and let the interest rate of \(r \) percent annually be compounded continuously.

Amount of annuity after \(N \) payments \(A = \int_0^N p e^{rt} \, dt \)

Example 3.23

Mr. Arul invests ₹10,000 in ABC Bank each year, which pays an interest of 10% per annum compounded continuously for 5 years. How much amount will there be after 5 years. \((e^{0.5} = 1.6487) \)
Solution:

\[p = 10000, \quad r = 0.1, \quad N = 5 \]

Annuity \[= \int_{0}^{5} 10000e^{0.1t} \, dt \]

\[= \frac{10000}{0.1} \left(e^{0.1 \times 5} - e^{0} \right) \]

\[= 100000 \left(e^{0.5} - 1 \right) \]

\[= 100000 \left[0.6487 \right] \]

\[= ₹ 64,870 \]

Consumption of a Natural Resource

Suppose that \(p(t) \) is the annual consumption of a natural resource in year \(t \). If the consumption of the resource is growing exponentially at growth rate \(k \), then the total consumption of the resource after \(T \) years is given by

\[\int_{0}^{T} p(t)e^{kt} \, dt = \frac{p_{0}}{k} (e^{kT} - 1) \]

Where \(p_{0} \) is the initial annual consumption at time \(t = 0 \).

Example 3.24

In year 2000 world gold production was 2547 metric tons and it was growing exponentially at the rate of 0.6% per year. If the growth continues at this rate, how many tons of gold will be produced from 2000 to 2013? [\(e^{0.078} = 1.0811 \)]

Solution:

Annual consumption at time \(t = 0 \) (In the year 2000) \(= p_{0} = 2547 \) metric ton.

Total production of Gold from 2000 to 2013 \[= \int_{0}^{13} 2547e^{0.006t} \, dt \]

\[= \frac{2547}{0.006} \left[e^{0.006t} \right]_{0}^{13} \]

\[= 424500 \left(e^{0.078} - 1 \right) \]

\[= 34,426.95 \text{ metric tons approximately.} \]
3.2.3 The demand functions from elasticity of demand

Elasticity of the function \(y = f(x) \) at a point \(x \) is defined as the limiting case of ratio of the relative change in \(y \) to the relative change in \(x \).

\[
\therefore \quad \eta = \frac{E_y}{E_x} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} \cdot \frac{dy}{dx} = \frac{y}{x} \cdot \frac{dy}{dx}
\]

\[
\Rightarrow \quad \eta = \frac{x \cdot dy}{y \cdot dx}
\]

Elasticity of demand \(\eta_d = \frac{-p \cdot dx}{x \cdot dp} \)

\[
\frac{-dp}{p} = dx \cdot \frac{1}{x \cdot \eta_d}
\]

Integrating both sides w.r. to \(x \)

\[
-\int \frac{dp}{p} = \frac{1}{\eta_d} \int \frac{dx}{x}
\]

Equation yields the demand function ‘\(p \)’ as a function of \(x \).

The revenue function can be found out by using integration.

Example 3.25

When the Elasticity function is \(\frac{x}{x-2} \). Find the function when \(x = 6 \) and \(y = 16 \).

Solution:

\[
\frac{E_y}{E_x} = \frac{x}{x-2}
\]

\[
\frac{x \cdot dy}{y \cdot dx} = \frac{x}{x-2}
\]

\[
\frac{dy}{y} = \frac{x \cdot dx}{x-2 \cdot x}
\]

\[
\int \frac{dy}{y} = \int \frac{dx}{x-2}
\]

\[\log y = \log(x-2)+\log k \]

\[y = k(x-2) \]

when \(x = 6, y = 16 \) \(\Rightarrow \) \(16 = k(6-2) \)

\[k = 4 \]

\[y = 4 \cdot (x-2) \]
Example 3.26

The elasticity of demand with respect to price p for a commodity is $\eta_d = \frac{p + 2p^2}{100 - p - p^2}$.

Find demand function where price is ₹5 and the demand is 70.

Solution

\[\eta_d = \frac{p + 2p^2}{100 - p - p^2} \]

\[-\frac{p}{x} \frac{dx}{dp} = \frac{p(2p + 1)}{100 - p - p^2} \]

\[\frac{-dx}{x} = \frac{-(2p + 1)}{p^2 + p - 100} dp \]

\[\int \frac{dx}{x} = \int \frac{2p + 1}{p^2 + p - 100} dp \]

\[\log x = \log(p^2 + p = 100) + \log k \]

\[\therefore \quad x = k(p^2 + p - 100) \]

When $x = 70, \quad p = 5$,

\[70 = k(25 + 5 - 100) \]

\[\Rightarrow k = -1 \]

Hence

\[x = 100 - p - p^2 \]

\[R = px \]

Revenue

\[= p(100 - p - p^2) \]

Exercise 3.2

1. The cost of over haul of an engine is ₹10,000 The operating cost per hour is at the rate of $2x - 240$ where the engine has run x km. Find out the total cost if the engine run for 300 hours after overhaul.

2. Elasticity of a function $\frac{E_y}{E_x}$ is given by $\frac{E_y}{E_x} = \frac{-7x}{(1-2x)(2+3x)}$. Find the function when $x = 2, y = \frac{3}{8}$.

114 | 12th Std. Business Mathematics and Statistics
3. The elasticity of demand with respect to price for a commodity is given by \(\frac{4 - x}{x} \), where \(p \) is the price when demand is \(x \). Find the demand function when price is 4 and the demand is 2. Also find the revenue function.

4. A company receives a shipment of 500 scooters every 30 days. From experience it is known that the inventory on hand is related to the number of days \(x \). Since the shipment, \(I(x) = 500 - 0.03x^2 \), the daily holding cost per scooter is \(\text{₹} 0.3 \). Determine the total cost for maintaining inventory for 30 days.

5. An account fetches interest at the rate of 5% per annum compounded continuously. An individual deposits \(\text{₹}1,000 \) each year in his account. How much will be in the account after 5 years. \((e^{0.25} = 1.284)\).

6. The marginal cost function of a product is given by \(\frac{dC}{dx} = 100 - 10x + 0.1x^2 \) where \(x \) is the output. Obtain the total and the average cost function of the firm under the assumption, that its fixed cost is \(\text{₹} 500 \).

7. The marginal cost function is \(MC = 300 \frac{x}{x^2} \) and fixed cost is zero. Find out the total cost and average cost functions.

8. If the marginal cost function of \(x \) units of output is \(\frac{a}{\sqrt{ax + b}} \) and if the cost of output is zero. Find the total cost as a function of \(x \).

9. Determine the cost of producing 200 air conditioners if the marginal cost (is per unit) is \(C'(x) = \frac{x^2}{200} + 4 \).

10. The marginal revenue (in thousands of Rupees) functions for a particular commodity is \(5 + 3 e^{-0.03x} \) where \(x \) denotes the number of units sold. Determine the total revenue from the sale of 100 units. (Given \(e^{-3} = 0.05 \) approximately)

11. If the marginal revenue function for a commodity is \(MR = 9 - 4x^2 \). Find the demand function.

12. Given the marginal revenue function \(\frac{4}{(2x + 3)^2} - 1 \), show that the average revenue function is \(P = \frac{4}{6x + 9} - 1 \).

13. A firm’s marginal revenue function is \(MR = 20 e^{-x/10} \left(\frac{1 - x}{10} \right) \). Find the corresponding demand function.
14. The marginal cost of production of a firm is given by \(C'(x) = 5 + 0.13x \), the marginal revenue is given by \(R'(x) = 18 \) and the fixed cost is ₹120. Find the profit function.

15. If the marginal revenue function is \(R'(x) = 1500 - 4x - 3x^2 \). Find the revenue function and average revenue function.

16. Find the revenue function and the demand function if the marginal revenue for \(x \) units is \(MR = 10 + 3x - x^2 \).

17. The marginal cost function of a commodity is given by \(MC = \frac{14000}{\sqrt{7x + 4}} \) and the fixed cost is ₹18,000. Find the total cost and average cost.

18. If the marginal cost (MC) of a production of the company is directly proportional to the number of units \((x) \) produced, then find the total cost function, when the fixed cost is ₹5,000 and the cost of producing 50 units is ₹5,625.

19. If \(MR = 20 - 5x + 3x^2 \), find total revenue function.

20. If \(MR = 14 - 6x + 9x^2 \), find the demand function.

3.2.4 Consumer’s surplus:

This theory was developed by the great economist Marshal. The demand function reveals the relationship between the quantities that the people would buy at a given price. It can be expressed as \(p = f(x) \)

Let us assume that the demand of the product \(x = x_0 \) when the price is \(p_0 \). But there can be some consumer who is ready to pay \(q_0 \), which is more than \(p_0 \) for the same quantity \(x_0 \). Any consumer who is ready to pay the price more than \(p_0 \) gains from the fact that the price is only \(p_0 \). This gain is called the consumer’s surplus.

It is represented in the following diagram

![Diagram showing Consumer’s Surplus](image)

Mathematically the Consumer’s Surplus (CS) can be defined as

\[
CS = \left(\int_{0}^{x_0} f(x) \, dx \right) - x_0 p_0
\]
Example 3.27

The demand function of a commodity is \(y = 36 - x^2 \). Find the consumer’s surplus for \(y_0 = 11 \)

Solution:

Given \(y = 36 - x^2 \) and \(y_0 = 11 \)

\[11 = 36 - x^2 \]

\[x^2 = 25 \]

\[x = 5 \]

\[
\text{CS} = \int_{0}^{x} (\text{demand function}) \, dx - (\text{Price} \times \text{quantity demanded})
\]

\[= \int_{0}^{5} (36 - x^2) \, dx - 5 \times 11 \]

\[= \left[36x - \frac{x^3}{3} \right]_{0}^{5} - 55 \]

\[= \left[36(5) - \frac{5^3}{3} \right] - 55 \]

\[= 180 - \frac{125}{3} - 55 = \frac{250}{3} \]

Hence the consumer’s surplus is \(\frac{250}{3} \) units.

3.2.5 Producer surplus

A supply function \(g(x) \) represents the quantity that can be supplied at a price \(p \). Let \(p_0 \) be the market price for the corresponding supply \(x_0 \). But there can be some producers who are willing to supply the commodity below the market price gain from the fact that the price is \(p_0 \). This gain is called the producer’s surplus. It is represented in the following diagram.

Mathematically, producer’s surplus (PS) can be defined as,

\[
\text{PS} = (\text{Area of the rectangle OAPB}) - (\text{Area below the supply function from } x = 0 \text{ to } x = x_s)
\]

\[
\text{PS} = x_0 p_0 - \int_{0}^{x_s} g(x) \, dx
\]
Example 3.28

Find the producer’s surplus defined by the supply curve $g(x) = 4x+8$ when $x_0 = 5$.

Solution:

$$g(x) = 4x + 8 \text{ and } x_0 = 5$$

$$p_0 = 4(5) + 8 = 28$$

$$PS = x_0 p_0 - \int_0^{x_0} g(x)dx$$

$$= (5 \times 28) - \int_0^5 (4x + 8)dx$$

$$= 140 - \left[4 \left(\frac{x^2}{2} \right) + 8x \right]_0^5$$

$$= 140 - (50 + 40)$$

$$= 50 \text{ units}$$

Hence the producer’s surplus = 50 units.

Example 3.29

The demand and supply function of a commodity are $p_d = 18 - 2x - x^2$ and $p_s = 2x - 3$. Find the consumer’s surplus and producer’s surplus at equilibrium price.

Solution:

Given $p_d = 18 - 2x - x^2$, $p_s = 2x - 3$

We know that at equilibrium prices $p_d = p_s$

$18 - 2x - x^2 = 2x - 3$

$x^2 + 4x - 21 = 0$

$(x - 3) (x + 7) = 0$

$x = -7 \text{ or } 3$

The value of x cannot be negative, $x = 3$.

When $x = 3$

$$p_0 = 18 - 2(3) - (3)^2 = 3$$

$$CS = \int_0^3 f(x)dx - x_0 p_0$$

$$= \int_0^3 (18 - 2x - x^2)dx - 3 \times 3$$
\[
\begin{align*}
&= \left[18x - x^2 - \frac{x^3}{3} \right]_0^3 \\
&= 18(3) - (3)^2 - \left(\frac{3^3}{3} \right) - 9 \\
CS &= 27 \text{ units} \\
PS &= x_0P_0 - \int_0^x g(x) \, dx \\
&= (3 \times 3) - \int_0^3 (2x - 3) \, dx \\
&= 9 - \left(x^2 - 3x \right)_0^3 \\
&= 9 \text{ units}
\end{align*}
\]

Hence at equilibrium price,
(i) the consumer’s surplus is 27 units
(ii) the producer’s surplus is 9 units.

Exercise 3.3

1. Calculate consumer’s surplus if the demand function \(p = 50 - 2x \) and \(x = 20 \)
2. Calculate consumer’s surplus if the demand function \(p = 122 - 5x - 2x^2 \) and \(x = 6 \)
3. The demand function \(p = 85 - 5x \) and supply function \(p = 3x - 35 \). Calculate the equilibrium price and quantity demanded. Also calculate consumer’s surplus.
4. The demand function for a commodity is \(p = e^{-x} \). Find the consumer’s surplus when \(p = 0.5 \).
5. Calculate the producer’s surplus at \(x = 5 \) for the supply function \(p = 7 + x \).
6. If the supply function for a product is \(p = 3x + 5x^2 \). Find the producer’s surplus when \(x = 4 \).
7. The demand function for a commodity is \(p = \frac{36}{x + 4} \). Find the consumer’s surplus when the prevailing market price is \(\₹ 6 \).
8. The demand and supply functions under perfect competition are \(p_d = 1600 - x^2 \) and \(p_s = 2x^2 + 400 \) respectively. Find the producer’s surplus.
9. Under perfect competition for a commodity the demand and supply laws are
\[p_d = \frac{8}{x+1} - 2 \quad \text{and} \quad p_s = \frac{x+3}{2} \]
respectively. Find the consumer’s and producer’s surplus.

10. The demand equation for a product is \(x = \sqrt{100 - p} \) and the supply equation is
\[x = \frac{P}{2} - 10 \]. Determine the consumer’s surplus and producer’s surplus, under market equilibrium.

11. Find the consumer’s surplus and producer’s surplus for the demand function
\[p_d = 25 - 3x \] and supply function \(p_s = 5 + 2x \).

Exercise 3.4

Choose the best answer from the given alternatives

1. Area bounded by the curve \(y = x(4-x) \) between the limits 0 and 4 with \(x \)-axis is
(a) \(\frac{30}{3} \) sq.units (b) \(\frac{31}{2} \) sq.units (c) \(\frac{32}{3} \) sq.units (d) \(\frac{15}{2} \) sq.units

2. Area bounded by the curve \(y = e^{-2x} \) between the limits \(0 \leq x \leq \infty \) is
(a) 1 sq.units (b) \(\frac{1}{2} \) sq.unit (c) 5 sq.units (d) 2 sq.units

3. Area bounded by the curve \(y = \frac{1}{x} \) between the limits 1 and 2 is
(a) \(\log_2 \) sq.units (b) \(\log_5 \) sq.units (c) \(\log_3 \) sq.units (d) \(\log_4 \) sq.units

4. If the marginal revenue function of a firm is \(\text{MR} = e^{\frac{-x}{10}} \), then revenue is
(a) \(-10e^{\frac{-x}{10}} \) (b) \(1 - e^{\frac{-x}{10}} \) (c) \(10 \left(1 - e^{\frac{-x}{10}} \right) \) (d) \(e^{\frac{-x}{10}} + 10 \)

5. If MR and MC denotes the marginal revenue and marginal cost functions, then the profit functions is
(a) \(P = \int (MR - MC) \, dx + k \) (b) \(P = \int (MR + MC) \, dx + k \)
(c) \(P = \int (MR)(MC) \, dx + k \) (d) \(P = \int (R - C) \, dx + k \)

6. The demand and supply functions are given by \(D(x) = 16 - x^2 \) and \(S(x) = 2x^2 + 4 \) are under perfect competition, then the equilibrium price \(x \) is
(a) 2 (b) 3 (c) 4 (d) 5
7. The marginal revenue and marginal cost functions of a company are \(MR = 30 - 6x \) and \(MC = -24 + 3x \) where \(x \) is the product, then the profit function is

(a) \(9x^2 + 54x \)
(b) \(9x^2 - 54x \)
(c) \(54x - \frac{9x^2}{2} \)
(d) \(54x - \frac{9x^2}{2} + k \)

8. The given demand and supply function are given by \(D(x) = 20 - 5x \) and \(S(x) = 4x + 8 \) if they are under perfect competition then the equilibrium demand is

(a) 40
(b) \(\frac{41}{2} \)
(c) \(\frac{40}{3} \)
(d) \(\frac{41}{5} \)

9. If the marginal revenue \(MR = 35 + 7x - 3x^2 \), then the average revenue AR is

(a) \(35x + \frac{7x^2}{2} - x^3 \)
(b) \(35 + \frac{7x}{2} - x^2 \)
(c) \(35 + \frac{7x}{2} + x^2 \)
(d) \(35 + 7x + x^2 \)

10. The profit of a function \(p(x) \) is maximum when

(a) \(MC - MR = 0 \)
(b) \(MC = 0 \)
(c) \(MR = 0 \)
(d) \(MC + MR = 0 \)

11. For the demand function \(p(x) \), the elasticity of demand with respect to price is unity then

(a) revenue is constant
(b) cost function is constant
(c) profit is constant
(d) none of these

12. The demand function for the marginal function \(MR = 100 - 9x^2 \) is

(a) \(100 - 3x^2 \)
(b) \(100x - 3x^2 \)
(c) \(100x - 9x^2 \)
(d) \(100 + 9x^2 \)

13. When \(x_0 = 5 \) and \(p_0 = 3 \) the consumer's surplus for the demand function \(p_d = 28 - x^2 \) is

(a) 250 units
(b) \(\frac{250}{3} \) units
(c) \(\frac{251}{2} \) units
(d) \(\frac{251}{3} \) units

14. When \(x_0 = 2 \) and \(p_0 = 12 \) the producer's surplus for the supply function \(P_s = 2x^2 + 4 \) is

(a) \(\frac{31}{5} \) units
(b) \(\frac{31}{2} \) units
(c) \(\frac{32}{3} \) units
(d) \(\frac{30}{7} \) units

15. Area bounded by \(y = x \) between the lines \(y = 1, y = 2 \) with \(y = \text{axis} \) is

(a) \(\frac{1}{2} \) sq.units
(b) \(\frac{5}{2} \) sq.units
(c) \(\frac{3}{2} \) sq.units
(d) 1 sq.unit

\(\text{Integral Calculus – II} \)
16. The producer’s surplus when the supply function for a commodity is \(P = 3 + x \) and \(x_0 = 3 \) is
 (a) \(\frac{5}{2} \) (b) \(\frac{9}{2} \) (c) \(\frac{3}{2} \) (d) \(\frac{7}{2} \)

17. The marginal cost function is \(MC = 100 \sqrt{x} \). Find \(AC \) given that \(TC = 0 \) when the output is zero is
 (a) \(\frac{200}{3} \) \(\frac{1}{x^2} \) (b) \(\frac{200}{3} \) \(\frac{1}{x^2} \) (c) \(\frac{200}{3} \) \(\frac{1}{x^2} \) (d) \(\frac{200}{3} \) \(\frac{1}{x^2} \)

18. The demand and supply function of a commodity are \(P(x) = (x - 5)^2 \) and \(S(x) = x^2 + x + 3 \) then the equilibrium quantity \(x_0 \) is
 (a) 5 (b) 2 (c) 3 (d) 19

19. The demand and supply function of a commodity are \(D(x) = 25 - 2x \) and \(S(x) = \frac{10 + x}{4} \) then the equilibrium price \(P_0 \) is
 (a) 5 (b) 2 (c) 3 (d) 10

20. If \(MR \) and \(MC \) denote the marginal revenue and marginal cost and \(MR - MC = 36x - 3x^2 - 81 \), then the maximum profit at \(x \) is equal to
 (a) 3 (b) 6 (c) 9 (d) 5

21. If the marginal revenue of a firm is constant, then the demand function is
 (a) \(MR \) (b) \(MC \) (c) \(C(x) \) (d) \(AC \)

22. For a demand function \(p \), if \(\int \frac{dp}{p} = k \int \frac{dx}{x} \) then \(k \) is equal to
 (a) \(\eta_d \) (b) \(-\eta_d \) (c) \(\frac{-1}{\eta_d} \) (d) \(\frac{1}{\eta_d} \)

23. Area bounded by \(y = e^x \) between the limits 0 to 1 is
 (a) \((e - 1)\) sq.units (b) \((e + 1)\) sq.units (c) \(\left(1 - \frac{1}{e}\right)\) sq.units (d) \(\left(1 + \frac{1}{e}\right)\) sq.units

24. The area bounded by the parabola \(y^2 = 4x \) bounded by its latus rectum is
 (a) \(\frac{16}{3}\) sq.units (b) \(\frac{8}{3}\) sq.units (c) \(\frac{72}{3}\) sq.units (d) \(\frac{1}{3}\) sq.units

25. Area bounded by \(y = |x| \) between the limits 0 and 2 is
 (a) 1 sq.units (b) 3 sq.units (c) 2 sq.units (d) 4 sq.units
1. A manufacture’s marginal revenue function is given by \(MR = 275 - x - 0.3x^2 \). Find the increase in the manufactures total revenue if the production is increased from 10 to 20 units.

2. A company has determined that marginal cost function for product of a particular commodity is given by \(MC = 125 + 10x - \frac{x^2}{9} \). Where \(C \) is the cost of producing \(x \) units of the commodity. If the fixed cost is ₹250 what is cost of producing 15 units.

3. The marginal revenue function for a firm is given by \(MR = \frac{2x}{x+3} - \frac{2x}{(x+3)^2} + 5 \). Show that the demand function is \(P = \frac{2}{x+3} + 5 \).

4. For the marginal revenue function \(MR = 6 - 3x^2 - x^3 \), Find the revenue function and demand function.

5. The marginal cost of production of a firm is given by \(C'(x) = 20 + \frac{x}{20} \) the marginal revenue is given by \(R'(x) = 30 \) and the fixed cost is ₹100. Find the profit function.

6. The demand equation for a product is \(p_d = 20 - 5x \) and the supply equation is \(p_s = 4x + 8 \). Determine the consumer’s surplus and producer’s surplus under market equilibrium.

7. A company requires \(f(x) \) number of hours to produce 500 units. It is represented by \(f(x) = 1800x^{-0.4} \). Find out the number of hours required to produce additional 400 units. \([(900)^{0.6}=59.22, (500)^{0.6}=41.63]\)

8. The price elasticity of demand for a commodity is \(\frac{p}{x^3} \). Find the demand function if the quantity of demand is 3, when the price is ₹2.

9. Find the area of the region bounded by the curve between the parabola \(y = 8x^2 - 4x + 6 \) the y-axis and the ordinate at \(x = 2 \).

10. Find the area of the region bounded by the curve \(y^2 = 27x^3 \) and the lines \(x = 0, y = 1 \) and \(y = 2 \).

Summary

- The area of the region bounded by the curve \(y = f(x) \) between limits \(x = a \) and \(x = b \) with \(x - \text{axis} \) if area lies above \(x - \text{axis} \) is \(\int_a^b y \, dx \).
- The area of the region bounded by the curve \(y = f(x) \) between the limits \(x = a \) and \(x = b \) with \(x - \text{axis} \) if area lies below \(x - \text{axis} \) is \(\int_a^b -y \, dx \).
The area of the region bounded by the curve \(x = g(y) \) between limits \(y = c \) and \(y = d \) with \(y \)-axis if the area lies to the right of \(y \)-axis is \(\int_{c}^{d} x \, dy \).

The area of the region bounded by the curve \(x = g(y) \) between the limits \(y = d \) and \(y = e \) with \(y \)-axis if the area lies to the left of \(y \)-axis is \(\int_{d}^{e} -x \, dy \).

The area between the two given curves \(y = f(x) \) and \(y = g(x) \) from \(x = a \) to \(x = b \), is \(\int_{a}^{b} (f(x) - g(x)) \, dx \).

If the rate of growth or sale of a function is a known function of \(t \) say \(f(t) \) where \(t \) is a time measure, then total growth (or) sale of a product over a time period \(t \) is given by,

\[\text{Total sale} = \int_{0}^{t} f(t) \, dt, \quad 0 \leq t \leq r \]

Elasticity of demand is \(\eta_d = \frac{-p}{x} \frac{dx}{dp} \).

Total inventory carrying cost \(= c_i \int_{0}^{y} I(x) \, dx \).

Amount of annuity after \(N \) Payment is \(A = \int_{o}^{N} pe^{rt} \, dt \).

Cost function is \(C = \int (MC) \, dx + k \).

Average cost function is \(AC = \frac{C}{x}, x \neq 0 \).

Revenue function is \(R = \int (MR) \, dx + k \).

Demand function is \(P = \frac{R}{x} \).

Profit function is \(= MR - MC = k'(x) - C'(x) \).

Consumer’s surplus = \(\int_{0}^{x} f(x) \, dx - x_0P_0 \)

Producer’s surplus = \(x_0P_0 - \int_{0}^{x} p(x) \, dx \).

GLOSSARY

<table>
<thead>
<tr>
<th>Term</th>
<th>Tamil Translation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost function</td>
<td>செலவுசெசார்பு</td>
</tr>
<tr>
<td>Marginal cost function</td>
<td>இறுதிநிலல செலவுசெசார்பு</td>
</tr>
<tr>
<td>Integration</td>
<td>சேசாலையீடல்</td>
</tr>
<tr>
<td>Average cost function</td>
<td>ஒருசாரியத் செலவுசெசார்பு</td>
</tr>
<tr>
<td>Fixed cost</td>
<td>முனைவீட்டுக்கு செலவு</td>
</tr>
<tr>
<td>Output</td>
<td>செளியீடு</td>
</tr>
<tr>
<td>Revenue function</td>
<td>எருெசாயசெசார்பு</td>
</tr>
</tbody>
</table>

12th Std. Business Mathematics and Statistics
Marginal revenue function
Demand function
Supply function
Demand function
Supply function
Equilibrium
Profit
Maximum Profit
Manufacturer
Production
Inventory
Annuity

ICT Corner

Expected Result is shown in this picture

Step 1
Open the Browser, type the URL Link given below (or) Scan the QR Code. GeoGebra work Book named “12th Standard Business Mathematics” will open. In the work book there are two Volumes. Select “Volume-1”.

Step 2
Select the worksheet named “Consumers’ Surplus”. There is a problem based on Consumers’ Surplus using Integration. Move the point “A” on the curve. Observe the graph, formula applied and the result.

Browse in the link

12th standard Business Mathematics : https://ggbm.at/uzkernwr or Scan the QR Code.

Integral Calculus – II
Differential equations, began with Gottfried Wilhelm Leibnitz. He was a German Philosopher, mathematician, and logician.

In lower class, we have studied algebraic equations like

\[5x - 3(x - 6) = 4x, \quad x^2 - 7x + 12 = 0, \quad |8x - 5| = 3.\]

The goal here was to solve the equation, which meant to find the value (or values) of the variable that makes the equation true.

For example, \(x = 9\) is the solution to the first equation because only where 9 is substituted for \(x\) both sides of the equation are identical.

In general each type of algebraic equation had its own particular method of solution; quadratic equations were solved by one method equations involving absolute values by another, and so on. In each case, an equation was presented, and a certain method was employed to arrive at a solution, a method appropriate or the particular equation at hand.

These same general ideas carry over to differential equations, which are equations involving derivatives. There are different types of differential equations, and each type requires its own particular solution method.

Many problems related to economics, commerce and engineering, when formulated in mathematical forms, lead to differential equations. Many of these problems are complex in nature and very difficult to understand. But when they are described by differential equations, it is easy to analyse them.
Learning Objectives

After studying this chapter, the students will be able to understand

- order of the differential equations
- degree of the differential equations
- general and particular solution of Differential equations
- formation of Differential equations
- differential equations with variable separable
- homogeneous differential equations
- linear differential equations
- second order linear differential equations with constant coefficients.

A differential equation is an equation with a function and one or more of its derivatives. (i.e) an equation with the function \(y = f(x) \) and its derivatives \(\frac{dy}{dx}, \frac{d^2y}{dx^2}, \ldots \) is called differential equation.

For example,

(i) \(\frac{dy}{dx} = x + 5 \)
(ii) \(\frac{dy}{dx} = \frac{\sqrt{1-x^2}}{\sqrt{2-y^2}} \)
(iii) \(\frac{d^2y}{dx^2} + 2\left(\frac{dy}{dx}\right)^2 = 0 \)
(iv) \(\frac{d^2x}{dt^2} + m^2x = 0 \)

Differential equations are of two types. One is ordinary differential equations and other one partial differential equations. Here we study only ordinary differential equations.

4.1 Formation of ordinary differential equations

4.1.1 Definition of ordinary differential equation

An ordinary differential equation is an equation that involves some ordinary derivatives \(\left(\frac{dy}{dx}, \frac{d^2y}{dx^2}, \ldots\right) \) of a function \(y = f(x) \). Here we have one independent variable.

4.1.2 Order and degree of a differential equation

The highest order derivative present in the differential equation is the order of the differential equation.

Degree is the highest power of the highest order derivative in the differential equation, after the equation has been cleared from fractions and the radicals as for as the derivatives are concerned.
For example, consider the differential equation

\[\frac{d^3y}{dx^3} + \left(\frac{d^2y}{dx^2} \right)^3 + \left(\frac{dy}{dx} \right)^5 + y = 7 \]

Here the highest order derivatives is \(\frac{d^3y}{dx^3} \) (i.e 3rd order derivative). So the order of the differential equation is 3.

Now the power of highest order derivative \(\frac{d^3y}{dx^3} \) is 1.

\[\therefore \text{ The degree of the differential equation is 1.} \]

Example 4.1

Find the order and degree of the following differential equations.

(i) \(\frac{d^2y}{dx^2} + 3 \left(\frac{dy}{dx} \right)^2 + 4y = 0 \)
(ii) \(\frac{d^2y}{dx^2} - 2 \frac{dy}{dx} + 3y = 0 \)

(iii) \(\frac{d^3y}{dx^3} - 3 \left(\frac{dy}{dx} \right)^6 + 2y = x^2 \)
(iv) \(\left[1 + \frac{d^2y}{dx^2} \right]^\frac{3}{2} = a \frac{d^3y}{dx^3} \)

(v) \(y' + (y'')^2 = (x + y')^2 \)
(vi) \(\frac{d^3y}{dx^3} - \left(\frac{dy}{dx} \right)^{\frac{1}{2}} = 0 \)

(vii) \(y = 2 \left(\frac{dy}{dx} \right)^2 + 4x \frac{dx}{dy} \)

Solution

(i) \(\frac{d^2y}{dx^2} + 3 \left(\frac{dy}{dx} \right)^2 + 4y = 0 \)

Highest order derivative is \(\frac{d^2y}{dx^2} \)

\[\therefore \text{ order} = 2 \]

Power of the highest order derivative \(\frac{d^2y}{dx^2} \) is 1.

\[\therefore \text{ Degree} = 1 \]

(ii) \(\frac{d^2y}{dx^2} - 2 \frac{dy}{dx} + 3y = 0 \)

Highest order derivative is \(\frac{d^2y}{dx^2} \)

\[\therefore \text{ order} = 2 \]

Order and degree (if defined) of a differential equation are always positive integers.
Power of the highest order derivative \(\frac{d^2y}{dx^2} \) is 1.

\[\therefore \text{ degree } = 1 \]

(iii) \[\frac{d^3y}{dx^3} - 3 \left(\frac{dy}{dx} \right)^6 + 2y = x^2 \]

\[\therefore \text{ order } = 3, \text{ Degree } = 1 \]

(iv) \[\left[1 + \frac{d^2y}{dx^2} \right]^3 = a \frac{d^2y}{dx^2} \]

Here we eliminate the radical sign.

Squaring both sides, we get

\[\left[1 + \frac{d^2y}{dx^2} \right]^3 = a^2 \left(\frac{d^2y}{dx^2} \right)^2 \]

\[\therefore \text{ Order} = 2, \text{ degree} = 3 \]

(v) \(y' + \left(y'' \right)^2 = (x + y'')^2 \)

\[\text{For this write the equation as} \]

\[y' + \left(y'' \right)^2 = x^2 + 2xy'' + \left(y'' \right)^2 \]

\[y' = x^2 + 2xy'' \Rightarrow \frac{dy}{dx} = x^2 + 2x \frac{d^2y}{dx^2} \]

\[\therefore \text{ Order} = 2, \text{ degree} = 1 \]

(vi) \[\frac{d^3y}{dx^3} - \left(\frac{dy}{dx} \right)^{\frac{1}{2}} = 0 \]

Here we eliminate the radical sign.

For this write the equation as

\[\frac{d^3y}{dx^3} = \left(\frac{dy}{dx} \right)^{\frac{1}{2}} \]

Squaring both sides, we get

\[\left(\frac{d^3y}{dx^3} \right)^2 = \frac{dy}{dx} \]

\[\therefore \text{ Order} = 3, \text{ degree} = 2 \]
(vii) \[y = 2\left(\frac{dy}{dx}\right)^2 + 4x \frac{dx}{dy} \]

\[y = 2\left(\frac{dy}{dx}\right)^2 + 4x \frac{1}{\left(\frac{dy}{dx}\right)} \]

\[y \frac{dy}{dx} = 2\left(\frac{dy}{dx}\right)^3 + 4x \]

\[\therefore \quad \text{order}=1, \text{degree}=3 \]

Family of Curves

Sometimes a family of curves can be represented by a single equation with one or more arbitrary constants. By assigning different values for constants, we get a family of curves. The arbitrary constants are called the parameters of the family.

For example,

(i) \(y^2 = 4ax \) represents the equation of a family of parabolas having the origin as vertex where ‘a’ is the parameter.

(ii) \(x^2 + y^2 = a^2 \) represents the equation of family of circles having the origin as centre, where ‘a’ is the parameter.

(iii) \(y = mx + c \) represents the equation of a family of straight lines in a plane, where m and c are parameters.

4.1.3 **Formation of ordinary differential equation:**

Consider the equation \(f(x, y, c_1) = 0 \) \(\cdots \\cdots \) (1) where \(c_1 \) is the arbitrary constant. We form the differential equation from this equation. For this, differentiate equation (1) with respect to the independent variable occur in the equation.

Eliminate the arbitrary constant \(c_1 \) from (1) and its derivative. Then we get the required differential equation.

Suppose we have \(f(x, y, c_1, c_2) = 0 \). Here we have two arbitrary constants \(c_1 \) and \(c_2 \). So, find the first two successive derivatives. Eliminate \(c_1 \) and \(c_2 \) from the given function and the successive derivatives. We get the required differential equation.

Note

The order of the differential equation to be formed is equal to the number of arbitrary constants present in the equation of the family of curves.
Example 4.2

Find the differential equation of the family of straight lines \(y = mx + c \) when
(i) \(m \) is the arbitrary constant (ii) \(c \) is the arbitrary constant (iii) \(m \) and \(c \) both are arbitrary constants.

Solution:

(i) \(m \) is an arbitrary constant

\[y = mx + c \]

...(1)

Differentiating w.r. to \(x \), we get \(\frac{dy}{dx} = m \)

...(2)

Now we eliminate \(m \) from (1) and (2)

For this substitute (2) in (1)

\[y = x \frac{dy}{dx} + c \]

\[x \frac{dy}{dx} - y + c = 0 \] which is the required differential equation of first order.

(ii) \(c \) is an arbitrary constant

Differentiating (1), we get \(\frac{dy}{dx} = m \)

Here \(c \) is eliminated from the given equation

\[\therefore \frac{dy}{dx} = m \] is the required differential equation.

(iii) both \(m \) and \(c \) are arbitrary constants

Since \(m \) and \(c \) are two arbitrary constants differentiating (1) twice we get

\[\frac{dy}{dx} = m \]

\[\frac{d^2y}{dx^2} = 0 \]

Here \(m \) and \(c \) are eliminated from the given equation.

\[\frac{d^2y}{dx^2} = 0 \] which is the required differential equation.
Example 4.3

Find the differential equation of the family of curves \(y = \frac{a}{x} + b \) where \(a \) and \(b \) are arbitrary constants.

Solution:

Given \(y = \frac{a}{x} + b \)

Differentiating w.r.t. \(x \), we get

\[
\frac{dy}{dx} = -\frac{a}{x^2}
\]

\[
x^2 \frac{dy}{dx} = -a
\]

Again differentiating w.r.t. \(x \) we get

\[
x^2 \frac{d^2y}{dx^2} + 2x \frac{dy}{dx} = 0
\]

\[\Rightarrow x \frac{d^2y}{dx^2} + 2 \frac{dy}{dx} = 0 \text{ which is the required differential equation}
\]

Example 4.4

Find the differential equation corresponding to \(y = ae^{4x} + be^{-x} \) where \(a, b \) are arbitrary constants,

Solution:

Given \(y = ae^{4x} + be^{-x} \). \hspace{1cm} (1)

Here \(a \) and \(b \) are arbitrary constants

From (1),

\[
\frac{dy}{dx} = 4ae^{4x} - be^{-x}
\] \hspace{1cm} (2)

and

\[
\frac{d^2y}{dx^2} = 16ae^{4x} + be^{-x}
\] \hspace{1cm} (3)

\[(1)+(2) \Rightarrow y + \frac{dy}{dx} = 5ae^{4x} \] \hspace{1cm} (4)

\[(2)+(3) \Rightarrow \frac{dy}{dx} + \frac{d^2y}{dx^2} = 20ae^{4x} \]

\[= 4\left(5ae^{4x}\right) \]

\[= 4\left(y + \frac{dy}{dx}\right) \]
\[
\frac{dy}{dx} + \frac{d^2 y}{dx^2} = 4 y + 4 \frac{dy}{dx}
\]
\[
\Rightarrow \frac{d^2 y}{dx^2} - 3 \frac{dy}{dx} - 4 y = 0, \text{ which is the required differential equation.}
\]

Example 4.5

Find the differential equation of the family of curves \(y = e^x (a \cos x + b \sin x) \) where \(a \) and \(b \) are arbitrary constants.

Solution:

\(y = e^x (a \cos x + b \sin x) \) \hspace{1cm} (1)

Differentiating (1) w.r.t \(x \), we get

\[
\frac{dy}{dx} = e^x (a \cos x + b \sin x) + e^x (-a \sin x + b \cos x)
\]
\[
= y + e^x (-a \sin x + b \cos x) \quad \text{(from (1))}
\]
\[
\Rightarrow \frac{dy}{dx} - y = e^x (-a \sin x + b \cos x) \quad (2)
\]

Again differentiating, we get

\[
\frac{d^2 y}{dx^2} - \frac{dy}{dx} = e^x (-a \sin x + b \cos x) + e^x (-a \cos x - b \sin x)
\]
\[
= \frac{d^2 y}{dx^2} - \frac{dy}{dx} = e^x (-a \sin x + b \cos x) - e^x (a \cos x + b \sin x)
\]
\[
\frac{d^2 y}{dx^2} - \frac{dy}{dx} = \left(\frac{dy}{dx} - y \right) - y \quad \text{(from (1) and (2))}
\]
\[
\Rightarrow \frac{d^2 y}{dx^2} - 2 \frac{dy}{dx} + 2 y = 0, \text{ which is the required differential equation.}
\]

Exercise 4.1

1. Find the order and degree of the following differential equations.

 (i) \(\frac{dy}{dx} + 2y = x^3 \)
 (ii) \(\frac{d^3 y}{dx^3} + 3 \left(\frac{dy}{dx} \right)^3 + 2 \frac{dy}{dx} = 0 \)

 (iii) \(\frac{d^2 y}{dx^2} = \sqrt{y - \frac{dy}{dx}} \)
 (iv) \(\frac{d^2 y}{dx^2} = 0 \)

 (v) \(\frac{d^2 y}{dx^2} + y + \left(\frac{dy}{dx} - \frac{d^3 y}{dx^3} \right)^{3/2} = 0 \)
 (vi) \((2 - y'')^2 = y''^2 + 2 y' \)

 (vii) \(\left(\frac{dy}{dx} \right)^3 + y = x - \frac{dx}{dy} \)
2. Find the differential equation of the following
 (i) \(y = cx + c^3 \)
 (ii) \(y = c(x - c)^2 \)
 (iii) \(xy = c^2 \)
 (iv) \(x^2 + y^2 = a^2 \)

3. Form the differential equation by eliminating \(\alpha \) and \(\beta \) from \((x - \alpha)^2 + (y - \beta)^2 = r^2 \)

4. Find the differential equation of the family of all straight lines passing through the origin.

5. Form the differential equation that represents all parabolas each of which has a latus rectum \(4a \) and whose axes are parallel to the \(x \) axis.

6. Find the differential equation of all circles passing through the origin and having their centers on the \(y \) axis.

7. Find the differential equation of the family of parabola with foci at the origin and axis along the \(x \)-axis.

Solution of a Differential Equation:

The relation between the dependent and independent variables not involving derivatives is called the solution of the differential equation.

Solution of the differential equation must contain the same number of arbitrary constants as the order of the equation. Such a solution is called General (complete) solution of the differential equation.

4.2 First order and first degree differential equations

A differential equation of first order and first degree can be written as \(f(x, y, \frac{dy}{dx}) = 0 \).

Here we will discuss the solution of few types of equations.

4.2.1 General solution and particular solution

For any differential equations it is possible to find the general solution and particular solution.

4.2.2 Differential Equation in which variables are separable

If in an equation it is possible to collect all the terms of \(x \) and \(dx \) on one side and all the terms of \(y \) and \(dy \) on the other side, then the variables are said to be separable.

Thus the general form of such an equation is

\[f(x)dx = g(y)dy \text{ (or) } f(x)dx + g(y)dy = 0 \]

By direct integration we get the solution.
Example 4.6

Solve: \((x^2 + x + 1)dx + (y^2 - y + 3)dy = 0\)

Solution:

Given \((x^2 + x + 1)dx + (y^2 - y + 3)dy = 0\)

It is of the form \(f(x)dx + g(y)dy = 0\)

Integrating, we get

\[
\int (x^2 + x + 1)\,dx + \int (y^2 - y + 3)\,dy = c
\]

\[
\left(\frac{x^3}{3} + \frac{x^2}{2} + x\right) + \left(\frac{y^3}{3} - \frac{y^2}{2} + 3y\right) = c
\]

Example 4.7

Solve \(\frac{dy}{dx} = e^{x - y} + x^2 e^{-y}\)

Solution:

Given \(\frac{dy}{dx} = e^{x - y} + x^2 e^{-y} = e^{-y} e^x + e^{-y} x^2 = e^{-y} (e^x + x^2)\)

Separating the variables, we get \(e^y dy = (e^x + x^2) dx\)

Integrating, we get

\[
\int e^y dy = \int (e^x + x^2)\,dx
\]

\[
e^y = e^x + \frac{x^3}{3} + c
\]

Example 4.8

Solve \(3e^x \tan y \, dx + (1 + e^x) \sec^2 y \, dy = 0\) given \(y(0) = \frac{\pi}{4}\)

Solution:

Given \(3e^x \tan y \, dx + (1 + e^x) \sec^2 y \, dy = 0\)

\[
3e^x \tan y \, dx = -(1 + e^x) \sec^2 y \, dy
\]

\[
\frac{3e^x}{1 + e^x} \, dx = -\frac{\sec^2 y}{\tan y} \, dy
\]
Integrating, we get \[3\int \frac{e^x}{1+e^x} \, dx = -\int \sec^2 y \, \tan y \, dy + c\]

\[3\log(1+e^x) = -\log \tan y + \log c\]

\[\log(1+e^x)^3 + \log \tan y = \log c\]

\[\log((1+e^x)^3 \tan y) = \log c\]

\[(1+e^x)^3 \tan y = c \quad (1)\]

Given \[y(0) = \pi/4 \quad (i.e.) \quad y = \pi/4 \quad \text{at} \quad x = 0\]

\[(1) \Rightarrow (1+e^0)^3 \tan \frac{\pi}{4} = c\]

\[2^3 (1) = c\]

\[c = 8\]

Hence the required solution is \((1+e^x)^3 \tan y = 8\)

Example 4.9

Solve \(\sec^2 x \tan y \, dx + \sec^2 y \tan x \, dy = 0\)

Solution:

Separating the variables, we get

\[\frac{\sec^2 x}{\tan x} \, dx + \frac{\sec^2 y}{\tan y} \, dy = 0\]

Integrating, we get

\[\int \frac{\sec^2 x}{\tan x} \, dx + \int \frac{\sec^2 y}{\tan y} \, dy = c\]

\[\log \tan x + \log \tan y = \log c\]

\[\log(\tan x \tan y) = \log c\]

\[\tan x \tan y = c\]

Example 4.10

Solve \(y \, dx - x \, dy - 3x^2 y e^x \, dx = 0\)
Solution:

Given equation can be written as \(\frac{ydx - xdy}{y^2} - 3x^2e^{x^3} \ dx = 0 \)

Integrating, \(\int \frac{ydx - xdy}{y^2} - \int 3x^2e^{x^3} \ dx = c \)

\[\int \left(\frac{x}{y} \right) \ dx - \int e^t \ dt = c \quad \text{(where} \ t = x^3 \ \text{and} \ dt = 3x^2 \ dx \) \]

\[\frac{x}{y} - e^t = c \]

\[\frac{x}{y} - e^{x^3} = c \]

Example 4.11

Solve : \(x - y \frac{dx}{dy} = a \left(x^2 + \frac{dx}{dy} \right) \)

Solution:

Given \(x - y \frac{dx}{dy} = a \left(x^2 + \frac{dx}{dy} \right) \)

\(x - y \frac{dx}{dy} = ax^2 + a \frac{dx}{dy} \)

\(x - ax^2 = a \frac{dx}{dy} + y \frac{dx}{dy} \)

\(x(1-ax) = (a + y) \frac{dx}{dy} \)

By separating the variables, we get

\[\frac{dx}{x(1-ax)} = \frac{dy}{a + y} \]

\(\left(\frac{a}{1-ax} + \frac{1}{x} \right) dx = \frac{dy}{a + y} \)

Integrating, \(\int \left(\frac{a}{1-ax} + \frac{1}{x} \right) dx = \frac{dy}{a + y} \)

\(- \log(1-ax) + \log x = \log(a + y) + \log c \)

\(\log \left(\frac{x}{1-ax} \right) = \log(c(a + y)) \)

\(\frac{x}{1-ax} = c(a + y) \)

\(x = (1-ax)(a + y)c \) which is the required solution
Example 4.12

The marginal cost function of manufacturing \(x \) gloves is \(6 + 10x - 6x^2 \). The total cost of producing a pair of gloves is ₹100. Find the total and average cost function.

Solution:

Given \(MC = 6 + 10x - 6x^2 \)

i.e., \(\frac{dc}{dx} = 6 + 10x - 6x^2 \)

\[dc = (6 + 10x - 6x^2)dx \]

\[\int dc = \int (6 + 10x - 6x^2)dx + k \]

\[c = \frac{6x + 10x^2}{2} - \frac{6x^3}{3} + k \]

\[c = 6x + 5x^2 - 2x^3 + k \quad (1) \]

Given \(c = 100 \) when \(x = 2 \)

\[\therefore \quad (1) \Rightarrow 100 = 12 + 5(4) - 2(8) + k \]

\[\Rightarrow \quad k = 84 \]

\[\therefore \quad (1) \Rightarrow c(x) = 6x + 5x^2 - 2x^3 + 84 \]

Average Cost \(AC = \frac{c}{x} = \frac{6x + 5x^2 - 2x^3 + 84}{x} \)

Example 4.13

The normal lines to a given curve at each point \((x, y)\) on the curve pass through the point \((1,0)\). The curve passes through the point \((1,2)\). Formulate the differential equation representing the problem and hence find the equation of the curve.

Solution:

Slope of the normal at any point \(P(x, y) = -\frac{dx}{dy} \)

Let \(Q \) be \((1,0)\)

Slope of the normal \(PQ \) is \(\frac{y_2 - y_1}{x_2 - x_1} \)

i.e., \(\frac{y - 0}{x - 1} = \frac{y}{x - 1} \)
\[\frac{dx}{dy} = \frac{y}{x-1} \Rightarrow \frac{dx}{dy} = \frac{y}{1-x} \], which is the differential equation

i.e.,

\[(1-x)dx = ydy\]

\[\int (1-x)dx = \int ydy + c\]

\[x - \frac{x^2}{2} = \frac{y^2}{2} + c \quad (1)\]

Since it passes through (1,2)

\[1 - \frac{1}{2} = \frac{4}{2} + c\]

\[c = \frac{1}{2} - 2 = \frac{-3}{2}\]

Put \(c = \frac{-3}{2}\) in (1)

\[x - \frac{x^2}{2} = \frac{y^2}{2} - \frac{3}{2}\]

\[2x - x^2 = y^2 - 3\]

\[\Rightarrow \quad y^2 = 2x - x^2 + 3\], which is the equation of the curve

Example 4.14

The sum of ₹2,000 is compounded continuously, the nominal rate of interest being 5% per annum. In how many years will the amount be double the original principal?

\(\log_e 2 = 0.6931\)

Solution:

Let \(P\) be the principal at time ‘\(t\)’

\[\frac{dP}{dt} = \frac{5}{100}P = 0.05P\]

\[\Rightarrow \quad \int \frac{dP}{P} = \int 0.05 \, dt + c\]

\[\log_e P = 0.05t + c\]

\[P = e^{0.05t}e^c\]

\[P = c_1e^{0.05t}\quad (1)\]

Given \(P = 2000\) when \(t = 0\)
\[\Rightarrow c_1 = 2000 \]
\[\therefore (1) \Rightarrow P = 2000e^{0.05t} \]

To find \(t \), when \(P = 4000 \)

\[(2) \Rightarrow 4000 = 2000e^{0.05t} \]
\[2 = e^{0.05t} \]
\[0.05t = \log 2 \]
\[t = \frac{0.6931}{0.05} = 14 \text{ years (approximately)} \]

Exercise 4.2

1. Solve: (i) \(\frac{dy}{dx} = ae^y \)
 (ii) \(\frac{1 + x^2}{1 + y} \frac{dy}{dx} = xy \)

2. Solve: \(y(1-x) - x \frac{dy}{dx} = 0 \)

3. Solve: (i) \(ydx - xdy = 0 \)
 (ii) \(\frac{dy}{dx} + e^x + ye^x = 0 \)

4. Solve: \(\cos x \cos y \frac{dx}{dx} - \sin y \sin x \frac{dy}{dx} = 0 \)

5. Solve: \((1-x)dy - (1+y)dx = 0 \)

6. Solve: (i) \(\frac{dy}{dx} = y \sin 2x \)
 (ii) \(\log \left(\frac{dy}{dx} \right) = ax + by \)

7. Find the curve whose gradient at any point \(P(x, y) \) on it is \(\frac{x-a}{y-b} \) and which passes through the origin.

4.2.3 Homogeneous Differential Equations

A differential equation of the form \(\frac{dy}{dx} = \frac{f(x, y)}{g(x, y)} \) is called homogeneous differential equation if \(f(x, y) \) and \(g(x, y) \) are homogeneous functions of the same degree in \(x \) and \(y \).

(or)

Homogeneous differential can be written as \(\frac{dy}{dx} = F \left(\frac{y}{x} \right) \).
Method of solving first order Homogeneous differential equation

Check \(f(x, y) \) and \(g(x, y) \) are homogeneous functions of same degree.

i.e. \(\frac{dy}{dx} = F\left(\frac{y}{x}\right) \)

Put \(y = vx \) and \(\frac{dy}{dx} = v + x \frac{dv}{dx} \)

The given differential equation becomes \(v + x \frac{dv}{dx} = F(v) \)

Separating the variables, we get

\[
x \frac{dv}{dx} = F(v) - v \quad \Rightarrow \quad \frac{dv}{F(v) - v} = \frac{dx}{x}
\]

By integrating we get the solution in terms of \(v \) and \(x \).

Replacing \(v \) by \(\frac{y}{x} \) we get the solution.

Note

Sometimes it becomes easier by taking the Homogeneous differential equation as \(\frac{dx}{dy} = F\left(\frac{x}{y}\right) \) \((1) \)

In this method we have to substitute \(x = vy \) and \(\frac{dx}{dy} = v + x \frac{dv}{dy} \) then \((1) \) reduces to variable separable type. By integrating, we get the solution in terms of \(v \) and \(y \). The solution is deduced by replacing \(v = \frac{x}{y} \).

Example 4.15

Solve the differential equation \(y^2dx + (xy + x^2)dy = 0 \)

Solution

\[
y^2dx + (xy + x^2)dy = 0
\]

\[
(xy + x^2)dy = -y^2dx
\]

\[
\frac{dy}{dx} = \frac{-y^2}{xy + x^2} \quad (1)
\]

It is a homogeneous differential equation, same degree in \(x \) and \(y \)

Put \(y = vx \) and \(\frac{dy}{dx} = v + x \frac{dv}{dx} \)
\[\therefore (1) \text{ becomes} \]
\[v + x \frac{dv}{dx} = \frac{-v^2 x^2}{x \sqrt{v} x + x^2} \]
\[= \frac{-v^2}{v + 1} \]
\[x \frac{dv}{dx} = \frac{-v^2}{v + 1} - v \]
\[= \frac{-v^2 - v^2 - v}{v + 1} \]
\[x \frac{dv}{dx} = \frac{-\left(v + 2v^2\right)}{1 + v} \]

Now, separating the variables
\[\frac{1 + v}{v(1 + 2v)} \frac{dv}{dx} = -\frac{dx}{x} \]
\[\frac{(1 + 2v) - v}{v(1 + 2v)} \frac{dv}{dx} = -\frac{dx}{x} \quad (\because 1 + v = 1 + 2v - v) \]
\[\frac{1}{v} - \frac{1}{1 + 2v} \frac{dv}{dx} = -\frac{dx}{x} \]

On Integration we have
\[\int \left(\frac{1}{v} - \frac{1}{1 + 2v}\right) dv = -\int \frac{dx}{x} \]
\[\log v - \frac{1}{2} \log (1 + 2v) = -\log x + \log c \]
\[\log \left(\frac{v}{\sqrt{1 + 2v}}\right) = \log \left(\frac{c}{x}\right) \]
\[\frac{v}{\sqrt{1 + 2v}} = \frac{c}{x} \]

Replace
\[v = \frac{y}{x} \]
we get
\[\frac{y}{\sqrt{1 + 2y}} \frac{x}{x} = \frac{c}{x} \]
\[y\sqrt{x} \sqrt{x + 2y} = c \]
\[\frac{y^2 x}{x + 2y} = k \]
where \(k = c^2 \)

Note
\[\int \frac{1 + v}{v^2 + 2v} \, dv \text{ can be done by} \]
the method of partial fraction also.
Example 4.16

Solve the differential equation \(\frac{dy}{dx} = \frac{x-y}{x+y} \).

Solution:

\[
\frac{dy}{dx} = \frac{x-y}{x+y} \tag{1}
\]

This is a homogeneous differential equation.

Now put \(y = vx \) and \(\frac{dy}{dx} = v + x \frac{dv}{dx} \).

\[
\therefore \quad (1) \implies v + x \frac{dv}{dx} = \frac{x-vx}{x+vx} = \frac{1-v}{1+v}
\]

\[
x \frac{dv}{dx} = \frac{1-v}{1+v} - v = \frac{1-2v-v^2}{1+v}
\]

\[
\frac{1+v}{v^2+2v-1} \frac{dv}{dx} = -\frac{dx}{x}
\]

Multiply 2 on both sides

\[
\frac{2+2v}{v^2+2v-1} \frac{dv}{dx} = -2 \frac{dx}{x}
\]

On Integration

\[
\int -\frac{2+2v}{v^2+2v-1} \frac{dv}{dx} = -2 \int \frac{dx}{x} \]

\[
\log (v^2 + 2v - 1) = -2 \log x + \log c
\]

\[
v^2 + 2v - 1 = \frac{c}{x^2}
\]

\[
x^2 (v^2 + 2v - 1) = c
\]

Now, Replace \(v = \frac{y}{x} \)

\[
x^2 \left[\frac{y^2 + 2y - 1}{x^2} \right] = c
\]

\[
y^2 + 2xy - x^2 = c \] is the solution.
Example 4.17

Find the particular solution of the differential equation \(x^2 \, dy + y \,(x + y) \, dx = 0 \) given that \(x = 1, \, y = 1 \).

Solution

\[
x^2 \, dy + y \,(x + y) \, dx = 0
\]

\[
x^2 \, dy = -y \,(x + y) \, dx
\]

\[
\frac{dy}{dx} = \frac{-(xy + y^2)}{x^2}
\] \(\text{(1)}\)

Put \(y = vx \) and \(\frac{dy}{dx} = v + x \, \frac{dv}{dx} \) in (1)

\[
v + x \, \frac{dv}{dx} = - \left(\frac{x \, vx + v^2 \, x^2}{x^2} \right)
\]

\[
= - \left(v + v^2 \right)
\]

\[
x \, \frac{dv}{dx} = -v^2 - v - v
\]

\[
= -(v^2 + 2v)
\]

On separating the variables

\[
\frac{dv}{v^2 + 2v} = \frac{-dx}{x}
\]

\[
\frac{dv}{v(v + 2)} = \frac{-dx}{x}
\]

\[
\frac{1}{2} \int \left[\frac{v + 2 - v}{v(v + 2)} \right] \, dv = \int \frac{-dx}{x}
\]

\[
\frac{1}{2} \left[\log v - \log (v + 2) \right] = -\log x + \log c
\]

\[
\frac{1}{2} \log \left(\frac{v}{v + 2} \right) = \log \left(\frac{c}{x} \right)
\]

We have

\[
\frac{v}{v + 2} = \frac{c^2}{x^2}
\]
Replace \(v = \frac{y}{x} \), we get

\[
\frac{y}{x \left(\frac{y}{x} + 2 \right)} = \frac{k}{x^2} \quad \text{where } e^2 = k
\]

\[
\frac{y}{x^2} = k
\]

(2)

When \(x = 1, y = 1 \)

\[\therefore \quad (2) \Rightarrow k = \frac{1}{1+2} \]

\[k = \frac{1}{3}\]

\[\therefore \quad \text{The solution is } 3x^2 y = 2x + y\]

Example 4.18

If the marginal cost of producing \(x \) shoes is given by \((3xy + y^2) \, dx + (x^2 + xy) \, dy = 0\). and the total cost of producing a pair of shoes is given by ₹12. Then find the total cost function.

Solution:

Given marginal cost function is \((x^2 + xy) \, dy + (3xy + y^2) \, dx = 0\)

\[
\frac{dy}{dx} = \frac{-(3xy + y^2)}{x^2 + xy} \quad (1)
\]

Put \(y = vx \) and \(\frac{dy}{dx} = v + x \frac{dv}{dx} \) in (1)

\[
v + x \frac{dv}{dx} = \frac{-(3x vx + v^2 x^2)}{x^2 + x vx} = \frac{-(3v + v^2)}{1 + v}
\]

Now,

\[
x \frac{dv}{dx} = \frac{-3v - v^2}{1 + v} - v = \frac{-3v - v^2 - v - v^2}{1 + v}
\]

\[
x \frac{dv}{dx} = \frac{-4v - 2v^2}{1 + v}
\]
\[\frac{1 + v}{4v + 2v^2} \, dv = -\frac{dx}{x} \]

On Integration

\[\int \frac{1 + v}{4v + 2v^2} \, dv = -\int \frac{dx}{x} \]

Now, multiply 4 on both sides

\[\int \frac{4 + 4v}{4v + 2v^2} \, dv = -4\int \frac{dx}{x} \]

\[\log (4v + 2v^2) = -4 \log x + \log c \]

\[4v + 2v^2 = \frac{c}{x^4} \]

\[x^4 (4v + 2v^2) = c \]

Replace \(v = \frac{y}{x} \)

\[x^4 \left(4 \frac{y}{x} + 2 \frac{y^2}{x^2} \right) = c \]

\[x^4 \left[\frac{4xy + 2y^2}{x^2} \right] = c \]

\[c = 2x^2 (2xy + y^2) \] \hspace{1cm} (2)

Cost of producing a pair of shoes = ₹12

\((i.e) \ y = 12 \ when \ x = 2 \)

\[c = 8 \left[48 + 144 \right] = 1536 \]

\[\therefore \ \text{The cost function is } x^2 (2xy + y^2) = 768 \]

Example 4.19

The marginal revenue ‘\(y \)’ of output ‘\(q \)’ is given by the equation \(\frac{dy}{dq} = \frac{q^2 + 3y^2}{2qy} \). Find the total Revenue function when output is 1 unit and Revenue is ₹5.

Solution:

Given that \(MR = \frac{dy}{dq} = \frac{q^2 + 3y^2}{2qy} \) \hspace{1cm} (1)
Put \(y = vq \) and \(\frac{dy}{dq} = v + q \frac{dv}{dq} \) in \((1) \)

Now \((1) \) becomes

\[
\begin{align*}
v + q \frac{dv}{dq} &= \frac{q^2 + 3v^2 q^2}{2q vq} \\
&= \frac{1 + 3v^2}{2v} \\
q \frac{dv}{dq} &= \frac{1 + 3v^2}{2v} - v \\
&= \frac{1 + 3v^2 - 2v^2}{2v} \\
&= \frac{1 + v^2}{2v} \\
\frac{2v}{1 + v^2} \frac{dv}{dq} &= \frac{dq}{q}
\end{align*}
\]

On Integration

\[
\int \frac{2v}{1 + v^2} \frac{dv}{dq} = \int \frac{dq}{q}
\]

\[
\log (1 + v^2) = \log q + \log c
\]

\[
1 + v^2 = cq
\]

Replace

\[
v = \frac{y}{q}
\]

\[
1 + \frac{y^2}{q^2} = cq
\]

\[
q^2 + y^2 = c q^3 \quad (2)
\]

Given output is 1 unit and revenue is ₹5

\[
\therefore (2) \Rightarrow 1 + 25 = c \Rightarrow c = 26
\]

\[
\therefore \text{The total revenue function is } q^2 + y^2 = 26q^3
\]
4.2.4 Linear differential equations of first order:

A differential equation is said to be linear when the dependent variable and its derivatives occur only in the first degree and no product of these occur.

The most general form of a linear equation of the first order is \(\frac{dy}{dx} + Py = Q \) (1)

\(P \) and \(Q \) are functions of \(x \) alone.

Equation (1) is linear in \(y \). The solution is given by \(ye^{\int Pdx} = \int Qe^{\int Pdx} dx + c \). Here \(e^{\int Pdx} \) is known as an integrating factor and is denoted by I.F.

Note

For the differential equation \(\frac{dx}{dy} + Px = Q \) (linear in \(x \)) where \(P \) and \(Q \) are functions of \(y \) alone, the solution is \(xe^{\int Pdy} = \int Qe^{\int Pdy} dy + c \)

Example 4.20

Solve \(\frac{dy}{dx} + \frac{y}{x} = x^3 \)

Solution:

Given \(\frac{dy}{dx} + \frac{1}{x} y = x^3 \)
It is of the form $\frac{dy}{dx} + Py = Q$

Here $P = \frac{1}{x}$, $Q = x^3$

$$\int Pdx = \int \frac{1}{x} dx = \log x$$

$I.F = e^{\int Pdx} = e^{\log x} = x$

The required solution is $y(I.F) = \int (Q(I.F))dx + c$

$$yx = \int x^3.x dx + c = \int x^4 dx + c$$

$$= \frac{x^5}{5} + c$$

$$\therefore yx = \frac{x^5}{5} + c$$

Example 4.21

Solve $\cos^2 x \frac{dy}{dx} + y = \tan x$

Solution:

The given equation can be written as $\frac{dy}{dx} + \frac{1}{\cos^2 x} y = \frac{\tan x}{\cos^2 x}$

$$\frac{dy}{dx} + y \sec^2 x = \tan x \sec^2 x$$

It is of the form $\frac{dy}{dx} + Py = Q$

Here $P = \sec^2 x, Q = \tan x \sec^2 x$

$$\int Pdx = \int \sec^2 x dx = \tan x$$

$I.F = e^{\int Pdx} = e^{\tan x}$

The required solution is $y(I.F) = \int (Q(I.F))dx + c$

$$ye^{\tan x} = \int \tan x \sec^2 x e^{\tan x} dx + c$$

Put $\tan x = t$

Then $\sec^2 x dx = dt$

A linear differential equation is always of first degree but every differential equation of the first degree need not be linear:

$$\frac{d^2 y}{dx^2} - \frac{3dy}{dx} + 2y^2 = 0$$

is not linear.
\[\therefore ye^{\tan x} = \int te^t \, dt + c \]
\[= \int td(e^t) + c \]
\[= te^t - e^t + c \]
\[= \tan x \, e^{\tan x} - e^{\tan x} + c \]
\[ye^{\tan x} = e^{\tan x} (\tan x - 1) + c \]

Example 4.22

Solve \((x^2 + 1) \frac{dy}{dx} + 2xy = 4x^2 \)

Solution:

The given equation can be reduced to

\[\frac{dy}{dx} + \frac{2x}{x^2 + 1} \, y = \frac{4x^2}{x^2 + 1} \]

It is of the form \(\frac{dy}{dx} + Py = Q \)

Here \(P = \frac{2x}{x^2 + 1}, Q = \frac{4x^2}{x^2 + 1} \)

\[\int P \, dx = \int \frac{2x}{x^2 + 1} \, dx = \log(x^2 + 1) \]

\[I.F = e^{\int P \, dx} = e^{\log(x^2 + 1)} = x^2 + 1 \]

The required solution is \(y(I.F) = \int Q(I.F) \, dx + c \)

\[y(x^2 + 1) = \int \frac{4x^2}{x^2 + 1} \left(x^2 + 1 \right) dx + c \]

\[y(x^2 + 1) = \frac{4x^3}{3} + c \]

Example 4.23

Solve \(\frac{dy}{dx} - 3y \cot x = \sin 2x \) given that \(y = 2 \) when \(x = \frac{\pi}{2} \)

Solution:

Given \(\frac{dy}{dx} - (3 \cot x) \cdot y = \sin 2x \)
It is of the form \(\frac{dy}{dx} + Py = Q \)

Here \(P = -3 \cot x \), \(Q = \sin 2x \)

\[
\int P \, dx = \int -3 \cot x \, dx = -3 \log \sin x = -\log \sin^3 x = \log \left(\frac{1}{\sin^3 x} \right)
\]

I.F. \(= e^{\int \log \left(\frac{1}{\sin^3 x} \right) \, dx} = \frac{1}{\sin^3 x} \)

The required solution is \(y \cdot \text{I.F.} = \int Q \cdot \text{I.F.} \, dx + c \)

\[
y \cdot \frac{1}{\sin^3 x} = \int \sin 2x \cdot \frac{1}{\sin^3 x} \, dx + c
\]

\[
y \cdot \frac{1}{\sin^3 x} = 2 \sin x \cdot \frac{1}{\sin^3 x} \, dx + c
\]

\[
y \cdot \frac{1}{\sin^3 x} = 2 \int \frac{\cos x}{\sin x} \, dx + c
\]

\[
y \cdot \frac{1}{\sin^3 x} = -2 \csc x + c \quad (1)
\]

Now \(y = 2 \) when \(x = \frac{\pi}{2} \)

\[
(1) \Rightarrow \quad 2 \left(\frac{1}{1} \right) = -2 \times 1 + c \quad \Rightarrow \quad c = 4
\]

\[
\therefore \quad (1) \Rightarrow \quad y \cdot \frac{1}{\sin^3 x} = -2 \csc x + 4
\]

Example 4.24

A firm has found that the cost \(C \) of producing \(x \) tons of certain product by the equation \(x \frac{dC}{dx} = \frac{3}{x} - C \) and \(C = 2 \) when \(x = 1 \). Find the relationship between \(C \) and \(x \).

Solution:

\[
x \frac{dC}{dx} = \frac{3}{x} - C
\]

\[
\frac{dC}{dx} = \frac{3}{x^2} - \frac{C}{x}
\]

\[
\frac{dC + C}{dx} = \frac{3}{x^2}
\]

i.e., \(\frac{dC + \frac{1}{x} C}{dx} = \frac{3}{x^2} \)
It is of the form \[
\frac{dC}{dx} + PC = Q
\]
Here, \(P = \frac{1}{x} \), \(Q = \frac{3}{x^2} \)

\[
\int Pdx = \int \frac{1}{x}dx = \log x
\]

\(I.F = e^{\int Pdx} = e^{\log x} = x \)

The Solution is

\[
C(I.F) = \int Q(I.F)dx + k \quad \text{where } k \text{ is constant}
\]

\[
Cx = \int \frac{3}{x^2}xdx + k
\]

\[
= 3\int \frac{1}{x}dx + k
\]

\[
Cx = 3\log x + k \quad (1)
\]

Given \(C = 2 \) When \(x = 1 \)

\[(1) \quad \Rightarrow \quad 2 \times 1 = k \Rightarrow k = 2\]

\[\therefore \text{The relationship between } C \text{ and } x \text{ is}\]

\[
Cx = 3\log x + 2
\]

Exercise 4.4

Solve the following:

1. \(\frac{dy}{dx} - \frac{y}{x} = x \)
2. \(\frac{dy}{dx} + y \cos x = \sin x \cos x \)
3. \(x \frac{dy}{dx} + 2y = x^4 \)
4. \(\frac{dy}{dx} + \frac{3x^2}{1 + x^3} y = \frac{1 + x^2}{1 + x^3} \)
5. \(\frac{dy}{dx} + \frac{y}{x} = xe^x \)
6. \(\frac{dy}{dx} + y \tan x = \cos^3 x \)
7. If \(\frac{dy}{dx} + 2y \tan x = \sin x \) and if \(y = 0 \) when \(x = \frac{\pi}{3} \) express \(y \) in terms of \(x \)
8. \(\frac{dy}{dx} + \frac{y}{x} = xe^x \)
9. A bank pays interest by continuous compounding, that is by treating the interest rate as the instantaneous rate of change of principal. A man invests ₹1,00,000 in the bank deposit which accrues interest, 8% per year compounded continuously. How much will he get after 10 years.
4.3 Second Order first degree differential equations with constant coefficients:

4.3.1 A general second order linear differential equation with constant coefficients is of the form

\[a \frac{d^2 y}{dx^2} + b \frac{dy}{dx} + cy = f(x) \]

\[aD^2 y + bDy + cy = f(x), \quad \text{where} \quad \frac{d}{dx} = D, \quad \frac{d^2}{dx^2} = D^2 \]

\[\phi(D) y = f(x) \quad (1) \]

where \(\phi(D) = aD^2 + bD + c \) (\(a, b \) and \(c \) are constants)

To solve the equation (1), we first solve the equation \(\phi(D) y = 0 \). The solution so obtained is called complementary function (C.F).

Next we operate on \(f(x) \) with \(\frac{1}{\phi(D)} \), the solution so obtained is called particular integral (P.I)

\[PI = \frac{1}{\phi(D)} f(x) \]

General solution is \(y = C.F + P.I \)

Type 1 : \(f(x) = 0 \)

\((i.e) \phi(D) y = 0 \)

To solve this, put \(\phi(D) = 0 \)

Replace \(D \) by \(m \). This equation is called auxiliary equation . \(\phi(m) = 0 \) is a quadratic equation. So we have two roots, say \(m_1 \) and \(m_2 \).

Now we have the following three cases

<table>
<thead>
<tr>
<th>Nature of roots</th>
<th>Complementary function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Real and different (m_1 \neq m_2)</td>
<td>(Ae^{m_1 x} + Be^{m_2 x})</td>
</tr>
<tr>
<td>2 Real and equal (m_1 = m_2 = m \text{(say)})</td>
<td>((Ax + B)e^{mx})</td>
</tr>
<tr>
<td>3 Complex roots ((\alpha \pm i\beta))</td>
<td>(e^{\alpha x} (A \cos \beta x + B \sin \beta x))</td>
</tr>
</tbody>
</table>

Here \(A \) and \(B \) are arbitrary constants
Example 4.25

Solve \((D^2 - 3D - 4)y = 0\)

Solution:

Given \((D^2 - 3D - 4)y = 0\)

The auxiliary equations is

\[m^2 - 3m - 4 = 0 \]

\[(m - 4)(m + 1) = 0 \]

\[m = -1, 4 \]

Roots are real and different

∴ The complementary function is \(Ae^{-x} + Be^{4x}\)

The general solution is \(y = Ae^{-x} + Be^{4x}\)

Example 4.26

Solve \(9y^{''} - 12y^{'} + 4y = 0\)

Solution:

Given \((9D^2 - 12D + 4)y = 0\)

The auxiliary equation is

\[(3m - 2)^2 = 0 \]

\[(3m - 2)(3m - 2) = 0 \Rightarrow m = \frac{2}{3}, \frac{2}{3} \]

Roots are real and equal.

The C.F. is \((Ax + B)e^{\frac{2}{3}x}\)

The general solution is \(y = (Ax + B)e^{\frac{2}{3}x}\)

Example 4.27

Solve \(\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 5y = 0\)
Solution:

Given \(\frac{d^2 y}{dx^2} - 4 \frac{dy}{dx} + 5 y = 0 \)

\((D^2 - 4D + 5)y = 0 \)

The auxiliary equation is

\[m^2 - 4m + 5 = 0 \]

\[\Rightarrow (m-2)^2 - 4 + 5 = 0 \]

\[(m-2)^2 = -1 \]

\[m-2 = \pm\sqrt{-1} \]

\[m = 2 \pm i \], it is if the form \(\alpha \pm i\beta \)

\[\therefore \quad C.F = e^{2x} \left[A \cos x + B \sin x \right] \]

The general solution is \(y = e^{2x} \left[A \cos x + B \sin x \right] \)

Example 4.28

Solve \(\frac{d^2 x}{dt^2} - \frac{3dx}{dt} + 2x = 0 \) given that when \(t = 0, \ x = 0 \) and \(\frac{dx}{dt} = 1 \)

Solution:

\(\frac{d^2 x}{dt^2} - \frac{3dx}{dt} + 2x = 0 \)

Given \((D^2 - 3D + 2)x = 0 \) where \(D = \frac{d}{dt} \)

A.E is \(m^2 - 3m + 2 = 0 \)

\((m-1)(m-2) = 0 \)

\[m = 1, 2 \]

\[C.F = Ae^t + Be^{2t} \]

The general solution is \(x = Ae^t + Be^{2t} \) \((1) \)

Now when \(t = 0, \ x = 0 \) (given)

\((1) \Rightarrow 0 = A + B \) \((2) \)
Differentiating (1) w.r.t ‘t’

\[\frac{dx}{dt} = Ae^t + 2Be^{2t} \]

When \(t=0 \),
\[\frac{dx}{dt} = 1 \]
\[A + 2B = 1 \] (3)

Thus we have \(A + B = 0 \) and \(A + 2B = 1 \)

Solving, we get \(A = -1, B = 1 \)

\[(1) \Rightarrow x = -e^t + e^{2t} \]
(i.e.) \[x = e^{2t} - e^t \]

Type II: \(f(x) = e^{ax} \) (i.e.) \(\phi(D) y = e^{ax} \)

P.I = \[\frac{1}{\phi(D)} e^{ax} \]

Replace \(D \) by \(a \), provided \(\phi(D) \neq 0 \) when \(D = a \)

If \(\phi(D) = 0 \) when \(D = a \), then

\[P.I = x \frac{1}{\phi'(D)} e^{ax} \]

Replace \(D \) by \(a \), provided \(\phi'(D) \neq 0 \) when \(D = a \)

If \(\phi'(D) = 0 \) when \(D = a \), then

\[P.I = x^2 \frac{1}{\phi''(D)} e^{ax} \] and so on

Example 4.29

Solve: \((D^2 - 4D - 1)y = e^{-3x} \)

Solution:
\[(D^2 - 4D - 1)y = e^{-3x} \]

The auxiliary equation is
\[m^2 - 4m - 1 = 0 \]
\[(m - 2)^2 - 4 - 1 = 0 \]
\((m-2)^2 = 5\)

\[m-2 = \pm \sqrt{5}\]

\[m = 2 \pm \sqrt{5}\]

C.F = \(Ae^{(2+\sqrt{5})x} + Be^{(2-\sqrt{5})x}\)

\[\text{PI} = \frac{1}{\phi(D)} f(x)\]

\[= \frac{1}{D^2 - 4D - 1} e^{-3x}\]

\[= \frac{1}{(-3)^2 - 4(-3) - 1} e^{-3x} \quad \text{(Replace } D \text{ by } 3)\]

\[= \frac{1}{9+12-1} e^{-3x}\]

\[= \frac{1}{20} e^{-3x}\]

Hence the general solution is

\[y = \text{C.F} + \text{P.I}\]

\[\Rightarrow \]

\[y = Ae^{(2+\sqrt{5})x} + Be^{(2-\sqrt{5})x} + \frac{e^{-3x}}{20}\]

Example 4.30

Solve: \((D^2 - 2D + 1)y = e^{2x} + e^{x}\)

Solution:

\[e^{2x} + e^{x}\]

The auxiliary equation is

\[m^2 - 2m + 1 = 0\]

\[\Rightarrow \]

\[(m-1)(m-1) = 0\]

\[m = 1, 1\]

C.F = \((Ax + B)e^x\)

\[\text{PI} = \frac{1}{\phi(D)} f(x) = \frac{1}{D^2 - 2D + 1} \left(e^{2x} + e^{x} \right)\]

Now, \(P.I_1 = \frac{1}{D^2 - 2D + 1} e^{2x}\)
\[
\frac{1}{4-4+1}e^{2x} \quad \text{(replace } D \text{ by } 2) \\
= e^{2x}
\]

and
\[
P.I_2 = \frac{1}{D^2 - 2D + 1} e^x \\
= \frac{1}{(D-1)^2} e^x
\]

Replace \(D \) by 1. \((D-1)^2 = 0 \) when \(D = 1 \)

\[
\therefore \quad P.I_2 = x \cdot \frac{1}{2(D-1)} e^x
\]

Replace \(D \) by 1. \((D-1) = 0 \) when \(D = 1 \)

\[
\therefore \quad P.I_2 = x^2 \frac{1}{2} e^x
\]

The general solution is
\[
y = C.F + P.I_1 + P.I_2
\]
\[
y = (Ax + B)e^x + e^{2x} + \frac{x^2}{2} e^x
\]

Example 4.31

Solve: \((3D^2 + D - 14)y = 4 - 13e^{\frac{-7}{3}x}\)

Solution:

\[
(3D^2 + D - 14)y = 4 - 13e^{\frac{-7}{3}x}
\]

The auxiliary equation is
\[
3m^2 + m - 14 = 0
\]
\[
(3m + 7)(m - 2) = 0
\]

\[
m = \frac{-7}{3}, 2
\]

C.F = \(Ae^{\frac{-7}{3}x} + Be^{2x}\)

\[\Rightarrow \quad P.I = \frac{1}{\phi(D)} f(x) = \frac{1}{3D^2 + D - 14} \left(4 - 13e^{\frac{-7}{3}x}\right)\]
\begin{align*}
&= \frac{1}{3D^2 + D - 14} (4) + \frac{1}{3D^2 + D - 14} \left(-13 e^{-\frac{7}{3}x}\right) \\
&= PI_1 + PI_2 \\
PI_1 &= \frac{1}{3D^2 + D - 14} 4e^{0x} \\
&= \frac{1}{0 + 0 - 14} 4e^{0x} \text{ (Replace } D \text{ by } 0) \\
PI_1 &= -\frac{4}{14} \\
PI_2 &= \frac{1}{3D^2 + D - 14} \times (13e^{-\frac{7}{3}x}) \\
\text{Replace } D \text{ by } -\frac{7}{3} \quad \text{Here } 3D^2 + D - 14 = 0 \quad \text{when } D = -\frac{7}{3} \\
\therefore \quad PI_2 &= x \cdot \frac{1}{6D + 1} \left(-13 e^{-\frac{7}{3}x}\right) \\
\text{Replace } D \text{ by } -\frac{7}{3} \\
\therefore \quad PI_2 &= x \cdot \frac{1}{6 \left(-\frac{7}{3}\right) + 1} \left(-13 e^{-\frac{7}{3}x}\right) \\
&= x \cdot \frac{1}{-13} \left(-13 e^{-\frac{7}{3}x}\right) \\
&= xe^{-\frac{7}{3}x} \\
\text{The general solution is } y &= C.F. + PI_1 + PI_2 \\
&= Ae^{-\frac{7}{3}x} + Be^{2x} - \frac{2}{7} + xe^{-\frac{7}{3}x} \\
\text{Example 4.32} \\
\text{Suppose that the quantity demanded } Q_d &= 29 - 2p - 5 \frac{dp}{dt} + \frac{d^2 p}{dt^2} \text{ and quantity supplied } Q_s = 5 + 4p \text{ where } p \text{ is the price. Find the equilibrium price for market clearance.} \\
\text{Solution:} \\
\text{For market clearance, the required condition is } Q_d &= Q_s \\
\text{Differential Equations} 159
\[29 - 2p - 5\frac{dp}{dt} + \frac{d^2 p}{dt^2} = 5 + 4p\]

\[24 - 6p - 5\frac{dp}{dt} + \frac{d^2 p}{dt^2} = 0\]

\[\frac{d^2 p}{dt^2} - 5\frac{dp}{dt} - 6p = -24\]

\[(D^2 - 5D - 6)p = -24\]

The auxiliary equation is

\[m^2 - 5m - 6 = 0\]

\[(m - 6)(m + 1) = 0\]

\[m = 6, -1\]

C.F = \(Ae^{6t} + Be^{-t}\)

\[P.I = \frac{1}{\phi(D)} f(x)\]

\[= \frac{1}{D^2 - 5D - 6} (-24)e^{0t}\]

\[= \frac{-24}{-6} \text{ (Replace D by 0)}\]

\[= 4\]

The general solution is

\[p = C.F + P.I\]

\[= Ae^{6t} + Be^{-t} + 4\]

Exercise 4.5

Solve the following differential equations

1. \(\frac{d^2 y}{dx^2} - 6 \frac{dy}{dx} + 8y = 0\)
2. \(\frac{d^2 y}{dx^2} - 4 \frac{dy}{dx} + 4y = 0\)
3. \(\left(D^2 + 2D + 3\right)y = 0\)
4. \(\frac{d^2 y}{dx^2} - 2k \frac{dy}{dx} + k^2 y = 0\)
5. \(\left(D^2 - 2D - 15\right)y = 0\) given that \(\frac{dy}{dx} = 0\) and \(\frac{d^2 y}{dx^2} = 2\) when \(x = 0\)
6. \(\left(4D^2 + 4D - 3\right)y = e^{2x}\)
7. \(\frac{d^2 y}{dx^2} + 16y = 0\)
(8) \((D^2 - 3D + 2)y = e^{3x}\) which shall vanish for \(x = 0\) and for \(x = \log 2\)

(9) \((D^2 + D - 6)y = e^{3x} + e^{-3x}\)

(10) \((D^2 - 10D + 25)y = 4e^{5x} + 5\)

(11) \((4D^2 + 16D + 15)y = 4e^{-3x}\)

(12) \((3D^2 + D - 14)y = 13e^{2x}\)

(13) Suppose that the quantity demanded \(Q_d = 13 - 6p + \frac{dp}{dt} + \frac{d^2p}{dt^2}\) and quantity supplied \(Q_s = -3 + 2p\) where \(p\) is the price. Find the equilibrium price for market clearance.

Exercise 4.6

Choose the Correct answer

1. The degree of the differential equation \(\frac{d^4y}{dx^4} - \left(\frac{d^2y}{dx^2}\right)^4 + \frac{dy}{dx} = 3\)

(a) 1 (b) 2 (c) 3 (d) 4

2. The order and degree of the differential equation \(\sqrt{\frac{d^2y}{dx^2}} = \sqrt{\frac{dy}{dx}} + 5\) are respectively

(a) 2 and 3 (b) 3 and 2 (c) 2 and 1 (d) 2 and 2

3. The order and degree of the differential equation \(\left(\frac{d^2y}{dx^2}\right)^3 - \sqrt{\frac{dy}{dx}} - 4 = 0\) are respectively.

(a) 2 and 6 (b) 3 and 6 (c) 1 and 4 (d) 2 and 4

4. The differential equation \(\left(\frac{dx}{dy}\right)^3 + 2\frac{1}{y^2} = x\) is

(a) of order 2 and degree 1 (b) of order 1 and degree 3

(c) of order 1 and degree 6 (d) of order 1 and degree 2

5. The differential equation formed by eliminating \(a\) and \(b\) from \(y = ae^x + be^{-x}\) is

(a) \(\frac{d^2y}{dx^2} - y = 0\) (b) \(\frac{d^2y}{dx^2} - \frac{dy}{dx} = 0\) (c) \(\frac{dy}{dx} = 0\) (d) \(\frac{d^2y}{dx^2} - x = 0\)

6. If \(y = cx + c - c^3\) then its differential equation is

(a) \(y = x\left(\frac{dy}{dx}\right) + \frac{dy}{dx} - \left(\frac{dy}{dx}\right)^3\)

(b) \(y + \left(\frac{dy}{dx}\right)^3 = x\frac{dy}{dx} - \frac{dy}{dx}\)

(c) \(\frac{dy}{dx} + y = \left(\frac{dy}{dx}\right)^3 - x\frac{dy}{dx}\)

(d) \(\frac{d^3y}{dx^3} = 0\)
7. The integrating factor of the differential equation \(\frac{dx}{dy} + Px = Q \) is
 (a) \(e^{\int Pdx} \)
 (b) \(e^{\int Qdx} \)
 (c) \(\int Pdy \)
 (d) \(e^{\int Qdy} \)

8. The complementary function of \((D^2 + 4)y = e^{2x} \) is
 (a) \((Ax + B)e^{2x} \)
 (b) \((Ax + B)e^{-2x} \)
 (c) \(A\cos 2x + B\sin 2x \)
 (d) \(Ae^{-2x} + Be^{2x} \)

9. The differential equation of \(y = mx + c \) is \(m \) and \(c \) are arbitrary constants
 (a) \(\frac{d^2y}{dx^2} = 0 \)
 (b) \(y = x \frac{dy}{dx} + c \)
 (c) \(xdy + ydx = 0 \)
 (d) \(ydx - xdy = 0 \)

10. The particular integral of the differential equation is
 \(\frac{dy}{dx} + 8 \frac{dy}{dx} + 16y = 2e^{4x} \)
 (a) \(\frac{x^2e^{4x}}{2!} \)
 (b) \(e^{4x} \)
 (c) \(x^2e^{4x} \)
 (d) \(xe^{4x} \)

11. Solution of \(\frac{dx}{dy} + Px = 0 \)
 (a) \(x = ce^{py} \)
 (b) \(x = ce^{-py} \)
 (c) \(x = py + c \)
 (d) \(x = cy \)

12. If \(\sec^2 x \) is an integrating factor of the differential equation \(\frac{dy}{dx} + Py = Q \) then \(P = \)
 (a) \(2\tan x \)
 (b) \(\sec x \)
 (c) \(\cos^2 x \)
 (d) \(\tan^2 x \)

13. The integrating factor of \(x \frac{dy}{dx} - y = x^2 \) is
 (a) \(\frac{-1}{x} \)
 (b) \(\frac{1}{x} \)
 (c) \(\log x \)
 (d) \(x \)

14. The solution of the differential equation \(\frac{dy}{dx} + Py = Q \) where \(P \) and \(Q \) are the function of \(x \) is
 (a) \(y = \int Qe^{\int Pdx} dx + c \)
 (b) \(y = \int Qe^{-\int Pdx} dx + c \)
 (c) \(ye^{\int Pdx} = \int Qe^{\int Pdx} dx + c \)
 (d) \(ye^{\int Pdx} = \int Qe^{-\int Pdx} dx + C \)

15. The differential equation formed by eliminating \(A \) and \(B \) from \(y = e^{-2x} (A\cos x + B\sin x) \) is
 (a) \(y_2 - 4y_1 + 5 = 0 \)
 (b) \(y_2 + 4y - 5 = 0 \)
 (c) \(y_2 - 4y_1 - 5 = 0 \)
 (d) \(y_2 + 4y_1 + 5 = 0 \)
16. The particular integral of the differential equation \(f(D)y = e^{ax} \) where \(f(D) = (D - a)^2 \)
 (a) \(\frac{x^2}{2} e^{ax} \)
 (b) \(xe^{ax} \)
 (c) \(\frac{x}{2} e^{ax} \)
 (d) \(x^2 e^{ax} \)

17. The differential equation of \(x^2 + y^2 = a^2 \)
 (a) \(xdy + ydx = 0 \)
 (b) \(ydx - xdy = 0 \)
 (c) \(xdx - ydy = 0 \)
 (d) \(xdx + ydy = 0 \)

18. The complementary function of \(\frac{d^2y}{dx^2} - \frac{dy}{dx} = 0 \) is
 (a) \(A + Be^x \)
 (b) \((A + B)e^x \)
 (c) \((Ax + B)e^x \)
 (d) \(Ae^x + B \)

19. The P.I of \((3D^2 + D - 14)y = 13e^{2x} \) is
 (a) \(\frac{x}{2} e^{2x} \)
 (b) \(xe^{2x} \)
 (c) \(\frac{x^2}{2} e^{2x} \)
 (d) \(13xe^{2x} \)

20. The general solution of the differential equation \(\frac{dy}{dx} = \cos x \) is
 (a) \(y = \sin x + 1 \)
 (b) \(y = \sin x - 2 \)
 (c) \(y = \cos x + c, c \) is an arbitrary constant
 (d) \(y = \sin x + c, c \) is an arbitrary constant

21. A homogeneous differential equation of the form \(\frac{dy}{dx} = f \left(\frac{y}{x} \right) \) can be solved by making substitution,
 (a) \(y = vx \)
 (b) \(v = yx \)
 (c) \(x = vy \)
 (d) \(x = v \)

22. A homogeneous differential equation of the form \(\frac{dx}{dy} = f \left(\frac{x}{y} \right) \) can be solved by making substitution,
 (a) \(x = vy \)
 (b) \(y = vx \)
 (c) \(y = v \)
 (d) \(x = v \)

23. The variable separable form of \(\frac{dy}{dx} = \frac{y(x - y)}{x(x + y)} \) by taking \(y = vx \) and \(\frac{dy}{dx} = v + x \frac{dv}{dx} \) is
 (a) \(\frac{2v^2}{1 + v} dv = \frac{dx}{x} \)
 (b) \(\frac{2v^2}{1 + v} dv = -\frac{dx}{x} \)
 (c) \(\frac{2v^2}{1 - v} dv = \frac{dx}{x} \)
 (d) \(\frac{1 + v}{2v^2} dv = -\frac{dx}{x} \)
24. Which of the following is the homogeneous differential equation?

 (a) \((3x - 5) \, dx = (4y - 1) \, dy\)

 (b) \(xy \, dx - (x^3 + y^3) \, dy = 0\)

 (c) \(y^2 \, dx + (x^2 - xy - y^3) \, dy = 0\)

 (d) \((x^2 + y) \, dx = (y^2 + x) \, dy\)

25. The solution of the differential equation \(\frac{dy}{dx} = y + \frac{f\left(\frac{y}{x}\right)}{f'\left(\frac{y}{x}\right)}\) is

 (a) \(f\left(\frac{y}{x}\right) = kx\)

 (b) \(x \cdot f\left(\frac{y}{x}\right) = k\)

 (c) \(f\left(\frac{y}{x}\right) = k\)

 (d) \(y \cdot f\left(\frac{y}{x}\right) = k\)

Miscellaneous Problems

1. Suppose that \(Q_d = 30 - 5P + 2 \frac{dP}{dt} + \frac{d^2P}{dt^2}\) and \(Q_s = 6 + 3P\). Find the equilibrium price for market clearance.

2. Form the differential equation having for its general solution \(y = ax^2 + bx\)

3. Solve \(yx^2 \, dx + e^{-x} \, dy = 0\)

4. Solve \((x^2 + y^3) \, dx + 2xy \, dy = 0\)

5. Solve \(x \frac{dy}{dx} + 2y = x^4\)

6. A manufacturing company has found that the cost \(C\) of operating and maintaining the equipment is related to the length ‘\(m\)’ of intervals between overhauls by the equation \(m^2 \frac{dC}{dm} + 2mC = 2\) and \(c = 4\) and when \(m = 2\). Find the relationship between \(C\) and \(m\).

7. Solve \((D^2 - 3D + 2) \, y = e^{4x}\) given \(y = 0\) when \(x = 0\) and \(x = 1\).

8. Solve \(\frac{dy}{dx} + y \cos x + x = 2 \cos x\)

9. Solve \(x^2 \, y \, dx - \left(x^3 + y^3\right) \, dy = 0\)

10. Solve \(\frac{dy}{dx} = xy + x + y + 1\)

Summary

- A differential equation is an equation with a function and one or more of its derivatives.

 (i.e) an equation with the function \(y = f(x)\) and its derivatives \(\frac{dy}{dx}, \frac{d^2y}{dx^2}\) ... is called differential equation.

- Order of the highest order derivative present in the differential equation is the order of the differential equation.
• Degree is the highest power of the highest order derivative in the differential equation, after the equation has been cleared from fractions and the radicals as for as the derivatives are concerned.

• A function which satisfies the given differential equation is called its solution. The solution which contains as many arbitrary constants as the order of the differential equation is called a general solution and the solution free from arbitrary constants is called particular solution.

• To form a differential equation from a given function we differentiate the function successively as many times as the number of arbitrary constants in the given function and then eliminate the arbitrary constants.

• In an equation it is possible to collect all the terms of \(x \) and \(dx \) on one side and all the terms of \(y \) and \(dy \) on the other side, then the variables are said to be separable. Thus the general form of such an equation is \(f(x)dx = g(y)dy \) (or) \(f(x)dx + g(y)dy = 0 \). By direct integration, we get the solution.

• A differential equation which can be expressed in the form \(\frac{dy}{dx} = f(x, y) \) or \(\frac{dx}{dy} = g(x, y) \) where \(f(x, y) \) and \(g(x, y) \) are homogeneous function of degree zero is called a homogeneous differential equation.

• A differential equation of the form \(\frac{dy}{dx} + Py = Q \) where \(P \) and \(Q \) are constants or functions of \(x \) only is called a first order linear differential equation.

• A general second order linear differential equation with constant coefficients is of the form \(a\frac{d^2y}{dx^2} + b\frac{dy}{dx} + cy = f(x) \).

GLOSSARY

<table>
<thead>
<tr>
<th>Term</th>
<th>Tamil Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Differential equation</td>
<td>வகைக்கைழுச் சமன்பாடுίள்</td>
</tr>
<tr>
<td>Ordinary differential equation</td>
<td>சபாதபாரண வகைக்கைழுச் சமன்பாடுைள்</td>
</tr>
<tr>
<td>Partial differential equation</td>
<td>்குதி வகைக்ைழுச் சமன்பாடுைள்</td>
</tr>
<tr>
<td>Order</td>
<td>வரிகச</td>
</tr>
<tr>
<td>Degree</td>
<td>்டி</td>
</tr>
<tr>
<td>Variable</td>
<td>மபாறி</td>
</tr>
<tr>
<td>Constant</td>
<td>மபாறிலி</td>
</tr>
<tr>
<td>Fixed constant</td>
<td>னிகையபான மபாறிலி</td>
</tr>
</tbody>
</table>
Arbitrary constant | பார்வைகள் பார்வைகள்
---|---
General solution | பார்வைகள் பார்வைகள்
Particular integra | பிரிகைகள் பிரிகைகள்
Abscissa | கிகை அச்சுத்தங்கள்
Ordinate | குதற்கள்
Variable separable | பார்வைகள் பிரிகைகள் சமன்பாடுகள்
Homogeneous equations | சமன்பாடுகள் சமன்பாடுகள்
Linear differential equations | தீர்வு சமன்பாடுகள் சமன்பாடுகள்
Second order linear differential equations | தீர்வு சமன்பாடுகள் சமன்பாடுகள்
Auxiliary equation | தீர்வு சமன்பாடுகள்
Complementary function | தீர்வு சமன்பாடுகள்

ICT Corner

Expected Result is shown in this picture

Step 1

Open the Browser, type the URL Link given below (or) Scan the QR Code. GeoGebra work Book named “12th Standard Business Mathematics” will open. In the work book there are two Volumes. Select “Volume-1”.

Step 2

Select the worksheet named “Differential Equation”

There is a video explanation and a graph in a single worksheet. Observe and learn the concepts.

Browse in the link

12th standard Business Mathematics : https://ggbm.at/uzkernwr or Scan the QR Code.
Introduction

Numerical Analysis is a branch of Mathematics which leads to approximate solution by repeated applications of four basic operations of Algebra. The knowledge of finite differences is essential for the study of Numerical Analysis.

Joseph-Louis Lagrange was an Italian mathematician and astronomer. He made significant contributions to the fields of analysis, number theory, and both classical and celestial mechanics.

Learning Objectives

After studying this chapter, students will be able to understand

- the finite differences
- how to find the polynomial using finite differences
- how to find the relations between the operators
- how to find the missing terms
- how to interpolate the values of a given series using Newton’s interpolation formulae
- how to apply the Lagrange’s interpolation formula

5.1 FINITE DIFFERENCES

Consider the arguments \(x_0, x_1, x_2, \ldots, x_n \) and the entries \(y_0, y_1, y_2, \ldots, y_n \). \(y = f(x) \) be a function of \(x \). Let us assume that the values of \(x \) are in increasing order and equally spaced with a space length \(h \). Then the values of \(x \) may be taken to be \(x_0, x_0 + h, x_0 + 2h, \ldots, x_0 + nh \) and the function assumes the values
Here we study some of the finite differences of the function \(y = f(x) \)

5.1.1 Forward Difference Operator, Backward Difference Operator and Shifting Operator

Forward Difference Operator (\(\Delta \)):

Let \(y = f(x) \) be a given function of \(x \). Let \(y_0, y_1, y_2, \ldots, y_n \) be the values of \(y \) at \(x = x_0, x_1, x_2, \ldots, x_n \) respectively. Then \(y_1 - y_0, y_2 - y_1, y_3 - y_2, \ldots, y_n - y_{n-1} \) are called the **first (forward) differences** of the function \(y \). They are denoted by \(\Delta y_0, \Delta y_1, \Delta y_2, \ldots, \Delta y_{n-1} \) respectively.

(i.e) \(\Delta y_0 = y_1 - y_0, \Delta y_1 = y_2 - y_1, \Delta y_2 = y_3 - y_2, \ldots, \Delta y_{n-1} = y_n - y_{n-1} \)

In general, \(\Delta y_n = y_{n+1} - y_n, n = 0, 1, 2, 3, \ldots \)

The symbol \(\Delta \) is called the **forward difference operator** and pronounced as *delta*.

The forward difference operator \(\Delta \) can also be defined as \(\Delta f(x) = f(x + h) - f(x), h \) is the equal interval of spacing.

Proof of these properties are not included in our syllabus:

Properties of the operator \(\Delta \):

Property 1: If \(c \) is a constant then \(\Delta c = 0 \)

Proof: Let \(f(x) = c \)

\[\therefore f(x + h) = c \] (where ‘\(h \)’ is the interval of difference)

\[\Delta f(x) = f(x + h) - f(x) \]

\[\Delta c = c - c = 0 \]

Property 2: \(\Delta \) is distributive i.e. \(\Delta(f(x) + g(x)) = \Delta f(x) + \Delta g(x) \)

Proof:

\[\Delta \left[f(x) + g(x) \right] = \left[f(x + h) + g(x + h) \right] - \left[f(x) + g(x) \right] \]

\[= f(x + h) + g(x + h) - f(x) - g(x) \]

\[= f(x + h) - f(x) + g(x + h) - g(x) \]

\[= \Delta f(x) + \Delta g(x) \]
Similarly we can show that $\Delta[f(x) - g(x)] = \Delta f(x) - \Delta g(x)$

In general, $\Delta[f_1(x) + f_2(x) + \ldots + f_n(x)] = \Delta f_1(x) + \Delta f_2(x) + \ldots + \Delta f_n(x)$

Property 3: If c is a constant then $\Delta c f(x) = c \Delta f(x)$

Proof:

\[
\Delta[c f(x)] = c f(x + h) - c f(x) = c[f(x + h) - f(x)] = c \Delta f(x)
\]

Results without proof

1. If m and n are positive integers then $\Delta^m \Delta^n f(x) = \Delta^{m+n} f(x)$

2. $\Delta[f(x) g(x)] = f(x) \Delta g(x) + g(x) \Delta f(x)$

3. $\Delta \left[\frac{f(x)}{g(x)}\right] = \frac{g(x) \Delta f(x) - f(x) \Delta g(x)}{g(x) \cdot g(x + h)}$.

The differences of the first differences denoted by $\Delta^2 y_0, \Delta^2 y_1, \ldots, \Delta^2 y_n$ are called second differences, where

\[
\Delta^2 y_n = \Delta(\Delta y_n) = \Delta(y_{n+1} - y_n)
\]

\[
= \Delta y_{n+1} - \Delta y_n
\]

\[
\Delta^2 y_n = \Delta y_{n+1} - \Delta y_n, \; n = 0, 1, 2, \ldots
\]

\[
\Delta^2 y_0 = \Delta y_1 - \Delta y_0
\]

\[
\Delta^2 y_1 = \Delta y_2 - \Delta y_1, \ldots
\]

Similarly the differences of second differences are called third differences.

\[
\Delta^3 y_n = \Delta^2 y_{n+1} - \Delta^2 y_n, \; n = 0, 1, 2, \ldots
\]

In particular,

\[
\Delta^3 y_0 = \Delta^2 y_1 - \Delta^2 y_0
\]

\[
\Delta^3 y_1 = \Delta^2 y_2 - \Delta^2 y_1
\]

In general k^{th} differences of y_n is

\[
\Delta^k y_n = \Delta^{k-1} y_{n+1} - \Delta^{k-1} y_n, \; n = 0, 1, 2, \ldots
\]
It is convenient to represent the above differences in a table as shown below.

Forward Difference Table for \(y \):

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
<th>(\Delta y)</th>
<th>(\Delta^2 y)</th>
<th>(\Delta^3 y)</th>
<th>(\Delta^4 y)</th>
<th>(\Delta^5 y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_0)</td>
<td>(y_0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(x_1)</td>
<td>(y_1)</td>
<td>(\Delta^2 y_0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(x_2)</td>
<td>(y_2)</td>
<td>(\Delta y_1)</td>
<td>(\Delta^3 y_0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(x_3)</td>
<td>(y_3)</td>
<td>(\Delta y_2)</td>
<td>(\Delta^3 y_1)</td>
<td>(\Delta^4 y_0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(x_4)</td>
<td>(y_4)</td>
<td>(\Delta y_3)</td>
<td>(\Delta^3 y_2)</td>
<td></td>
<td>(\Delta^5 y_0)</td>
<td></td>
</tr>
<tr>
<td>(x_5)</td>
<td>(y_5)</td>
<td>(\Delta y_4)</td>
<td>(\Delta^3 y_3)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The forward difference table for \(f(x) \) is given below.

<table>
<thead>
<tr>
<th>(x)</th>
<th>(f(x))</th>
<th>(\Delta f(x))</th>
<th>(\Delta^2 f(x))</th>
<th>(\Delta^3 f(x))</th>
<th>(\Delta^4 f(x))</th>
<th>(\Delta^5 f(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x + h)</td>
<td>(f(x + h))</td>
<td>(\Delta f(x))</td>
<td>(\Delta^2 f(x))</td>
<td>(\Delta^3 f(x))</td>
<td>(\Delta^4 f(x))</td>
<td>(\Delta^5 f(x))</td>
</tr>
<tr>
<td>(x + 2h)</td>
<td>(f(x + 2h))</td>
<td>(\Delta f(x + h))</td>
<td>(\Delta^2 f(x + h))</td>
<td>(\Delta^3 f(x))</td>
<td>(\Delta^4 f(x))</td>
<td>(\Delta^5 f(x))</td>
</tr>
<tr>
<td>(x + 3h)</td>
<td>(f(x + 3h))</td>
<td>(\Delta f(x + 2h))</td>
<td>(\Delta^2 f(x + 2h))</td>
<td>(\Delta^3 f(x + h))</td>
<td>(\Delta^4 f(x))</td>
<td>(\Delta^5 f(x))</td>
</tr>
<tr>
<td>(x + 4h)</td>
<td>(f(x + 4h))</td>
<td>(\Delta f(x + 3h))</td>
<td>(\Delta^2 f(x + 3h))</td>
<td>(\Delta^3 f(x + h))</td>
<td>(\Delta^4 f(x))</td>
<td>(\Delta^5 f(x))</td>
</tr>
</tbody>
</table>

Backward Difference operator \((\nabla) \):

Let \(y = f(x) \) be a given function of \(x \). Let \(y_0, y_1, \ldots, y_n \) be the values of \(y \) at \(x=x_0, x_1, x_2, \ldots, x_n \) respectively. Then

\[
\Delta y = y_1 - y_0 = \nabla y_1
\]
\[y_2 - y_1 = \nabla y_2 \]
\[y_n - y_{n-1} = \nabla y_n \]
are called the first (backward) differences.

The operator \(\nabla \) is called backward difference operator and pronounced as nepla.

Second (backward) differences: \[\nabla^2 y_n = \nabla y_n - \nabla y_{n+1}, \quad n = 1, 2, 3, \ldots \]

Third (backward) differences: \[\nabla^3 y_n = \nabla^2 y_n - \nabla^2 y_{n-1} \quad n = 1, 2, 3, \ldots \]

In general, \(k \)th (backward) differences:

\[\nabla^k y_n = \nabla^{k-1} y_n - \nabla^{k-1} y_{n-1} \quad n = 1, 2, 3, \ldots \]

Backward difference table:

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
<th>(\nabla y)</th>
<th>(\nabla^2 y)</th>
<th>(\nabla^3 y)</th>
<th>(\nabla^4 y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_0)</td>
<td>(y_0)</td>
<td>(\nabla y_1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(x_1)</td>
<td>(y_1)</td>
<td>(\nabla^2 y_2)</td>
<td>(\nabla^3 y_3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(x_2)</td>
<td>(y_2)</td>
<td>(\nabla^2 y_3)</td>
<td>(\nabla^4 y_4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(x_3)</td>
<td>(y_3)</td>
<td>(\nabla^3 y_4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(x_4)</td>
<td>(y_4)</td>
<td>(\nabla y_4)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Backward differences can also be defined as follows.

\[\nabla f(x) = f(x) - f(x - h) \]

First differences:

\[\nabla f(x + h) = f(x + h) - f(x) \]

\[\nabla f(x + 2h) = f(x + 2h) - f(x + h), \ldots, h \text{ is the interval of spacing.} \]

Second differences:

\[\nabla^2 f(x + h) = \nabla(\nabla f(x + h)) = \nabla(f(x + h) - f(x)) \]

\[= \nabla f(x + h) - \nabla f(x) \]
\[\nabla^2 f(x + 2h) = \nabla f(x + 2h) - \nabla f(x + h) \]

Third differences:

\[\nabla^3 f(x + h) = \nabla^2 f(x + h) - \nabla^2 f(x) \]
\[\nabla^3 f(x + 2h) = \nabla^2 f(x + 2h) - \nabla^2 f(x + h) \]

Here we note that,

\[\nabla f(x + h) = f(x + h) - f(x) = \Delta f(x) \]
\[\nabla f(x + 2h) = f(x + 2h) - f(x + h) = \Delta f(x + h) \]
\[\nabla^2 f(x + 2h) = \nabla f(x + 2h) - \nabla f(x + h) = \Delta f(x + h) - \Delta f(x) \]
\[= \Delta^2 f(x) \]

In general, \(\nabla^n f(x + nh) = \Delta^n f(x) \)

Shifting operator (E):

Let \(y = f(x) \) be a given function of \(x \) and \(x_0, x_0 + h, x_0 + 2h, x_0 + 3h, \ldots, x_0 + nh \) be the consecutive values of \(x \). Then the operator \(E \) is defined as

\[E \left[f(x_0) \right] = f(x_0 + h) \]

\(E \) is called the **shifting operator**. It is also called the **displacement operator**.

\[E \left[f(x_0 + h) \right] = f(x_0 + 2h), E[f(x_0 + 2h)] = f(x_0 + 3h), \ldots, \]
\[E[f(x_0 + (n-1)h)] = f(x_0 + nh) \]

E \left[f(x) \right] = f(x + h), h is the (equal) interval of spacing

\(E^2 f(x) \) means that the operator \(E \) is applied twice on \(f(x) \)

(i.e) \(E^2 f(x) = E \left[E f(x) \right] = E[f(x + h) = f(x + 2h) \]

In general,

\[E^n f(x) = f(x + nh) \text{ and } E^{-n} f(x) = f(x - nh) \]

Properties of the operator \(E \):

1. \(E \left[f_1(x) + f_2(x) + \ldots + f_n(x) \right] = Ef_1(x) + Ef_2(x) + \ldots + Ef_n(x) \]
2. \(E \left[c f(x) \right] = cEf(x) \) \(c \) is a constant
3. \(E^m [E^n f(x)] = E^n[E^m f(x)] = E^{m+n} f(x) \)

4. If \(n \) is a positive integer, then \(E^n[E^{-n}(f(x))] = f(x) \)

Note

Let \(y = f(x) \) be a given function of \(x \). Let \(y_0, y_1, y_2, \ldots, y_n \) be the values of \(y \) at \(x = x_0, x_1, x_2, \ldots, x_n \). Then \(E \) can also be defined as

\[
Ey_0 = y_1, \quad Ey_1 = y_2, \ldots, \quad Ey_{n-1} = y_n
\]

\[
E[Ey_0] = E(y_1) = y_2 \quad \text{and in general} \quad E^n y_0 = y_n
\]

Relations between the operators \(\Delta, \nabla \) and \(E \):

1. \(\Delta \equiv E - 1 \)

Proof: From the definition of \(\Delta \) we know that

\[
\Delta f(x) = f(x + h) - f(x)
\]

and \(E[f(x)] = f(x + h) \)

where \(h \) is the interval of difference.

\[
\Delta f(x) = f(x + h) - f(x)
\]

\[
\Delta f(x) = Ef(x) - f(x)
\]

\[
\Rightarrow \Delta f(x) = (E - 1)f(x)
\]

\[
\Delta \equiv E - 1
\]

\[
\therefore E \equiv 1 + \Delta
\]

2. \(E\Delta \equiv \Delta E \)

Proof:

\[
E(\Delta f(x)) = E[f(x + h) - f(x)]
\]

\[
= Ef(x + h) - Ef(x)
\]

\[
= f(x + 2h) - f(x + h)
\]

\[
= \Delta f(x + h)
\]

\[
= \Delta Ef(x)
\]
\[\therefore E \Delta \equiv \Delta E \]

3. \[\nabla \equiv \frac{E - 1}{E} \]

Proof:

\[\nabla f(x) = f(x) - f(x - h) \]

\[= f(x) - E^{-1}f(x) \]

\[= (1 - E^{-1})f(x) \]

\[\Rightarrow \nabla \equiv 1 - E^{-1} \]

i.e., \[\nabla \equiv 1 - \frac{1}{E} \]

Hence, \[\nabla \equiv \frac{E - 1}{E} \]

Example 5.1

Construct a forward difference table for the following data

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
<th>(\Delta y)</th>
<th>(\Delta^2 y)</th>
<th>(\Delta^3 y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0.174</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.174</td>
<td>-0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0.347</td>
<td>-0.002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>0.518</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Solution:

The Forward difference table is given below

Example 5.2

Construct a forward difference table for \(y = f(x) = x^3 + 2x + 1 \) for \(x = 1, 2, 3, 4, 5 \)

Solution

\(y = f(x) = x^3 + 2x + 1 \) for \(x = 1, 2, 3, 4, 5 \)
Example 5.3

By constructing a difference table and using the second order differences as constant, find the sixth term of the series 8, 12, 19, 29, 42...

Solution:

Let k be the sixth term of the series in the difference table.

First we find the forward differences.

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>Δy</th>
<th>$\Delta^2 y$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>13</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>34</td>
<td>21</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>73</td>
<td>39</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>136</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Given that the second differences are constant

\[k - 55 = 3 \]

\[k = 58 \]

\[\therefore \text{the sixth term of the series is 58} \]
Example 5.4

Find (i) Δe^{ax} (ii) $\Delta^2 e^x$ (iii) $\Delta \log x$

Solution:

(i) $\Delta e^{ax} = e^{a(x+h)} - e^x
= e^{ax} e^h - e^{ax}
= e^{ax} [e^h - 1]

(ii) $\Delta^2 e^x = \Delta \left[\Delta e^x \right]
= \Delta \left[e^{x+h} - e^x \right] = \Delta \left[e^x e^h - e^x \right]
= \Delta e^x [e^h - 1]
= (e^h - 1) \Delta e^x
= (e^h - 1)(e^h - 1)e^x
= (e^h - 1)^2 e^x

(iii) $\Delta \log x = \log(x+h) - \log x
= \log \frac{x+h}{x}
= \log \left(\frac{x+h}{x} \right)
= \log \left(1 + \frac{h}{x} \right)$

Example 5.5

Evaluate $\Delta \left[\frac{5x+12}{x^2+5x+6} \right]$ by taking ‘1’ as the interval of differencing.

Solution:

$\Delta \left[\frac{5x+12}{x^2+5x+6} \right]

By Partial fraction method

$\frac{5x+12}{x^2+5x+6} = \frac{A}{x+3} + \frac{B}{x+2}

A = \frac{5x+12}{x+2} \quad \text{at} \quad x = -3 = \frac{-15+12}{-1} = \frac{-3}{-1} = 3$
Example 5.6

Evaluate $\Delta^2 \left(\frac{1}{x} \right)$ by taking '1' as the interval of differencing.

Solution:

$$\Delta^2 \left(\frac{1}{x} \right) = \Delta \left(\Delta \left(\frac{1}{x} \right) \right)$$

Now

$$\Delta \left[\frac{1}{x} \right] = \frac{1}{x+1} - \frac{1}{x}$$

$$\Delta^2 \left(\frac{1}{x} \right) = \Delta \left(\frac{1}{x+1} - \frac{1}{x} \right)$$

$$= \Delta \left(\frac{1}{x+1} \right) - \Delta \left(\frac{1}{x} \right)$$

Similarly $\Delta^2 \left(\frac{1}{x} \right) = \frac{2}{x(x+1)(x+2)}$

Example 5.7

Prove that $f(4) = f(3) + \Delta f(2) + \Delta^2 f(1) + \Delta^3 f(1)$ taking ‘1’ as the interval of differencing.
Solution:

We know that \(f(4) - f(3) = \Delta f(3) \)

\[
f(4) - f(3) = \Delta f(3)
\]

\[
= \Delta \left[f(2) + \Delta f(2) \right]
\]

\[
\therefore \Delta(3) - \Delta(2) = \Delta f(2)
\]

\[
= \Delta f(2) + \Delta^2 f(2)
\]

\[
= \Delta f(2) + \Delta^2 f(2) + \Delta^3 f(1)
\]

\[
\therefore f(4) = f(3) + \Delta f(2) + \Delta^2 f(1) + \Delta^3 f(1).
\]

Example 5.8

Given \(U_0 = 1, U_1 = 11, U_2 = 21, U_3 = 28 \) and \(U_4 = 29 \) find \(\Delta^4 U_0 \)

Solution :

\[
\Delta^4 U_0 = (E - 1)^4 U_0
\]

\[
= \left(E^4 - 4E^3 + 6E^2 - 4E + 1 \right) U_0
\]

\[
= E^4U_0 - 4E^3U_0 + 6E^2U_0 - 4EU_0 + U_0
\]

\[
= U_4 - 4U_3 + 6U_2 - 4U_1 + U_0
\]

\[
= 29 - 4(28) + 6(21) - 4(11) + 1.
\]

\[
= 156 - 156 = 0
\]

Example 5.9

Given \(y_3 = 2, y_4 = -6, y_5 = 8, y_6 = 9 \) and \(y_7 = 17 \) Calculate \(\Delta^4 y_3 \)

Solution :

Given \(y_3 = 2, y_4 = -6, y_5 = 8, y_6 = 9 \) and \(y_7 = 17 \)

\[
\Delta^4 y_3 = (E - 1)^4 y_3
\]

\[
= (E^4 - 4E^3 + 6E^2 - 4E + 1)y_3
\]

\[
= E^4y_3 - 4E^3y_3 + 6E^2y_3 - 4Ey_3 + y_3
\]

\[
= y_7 - 4y_6 + 6y_5 - 4y_4 + y_3
\]

\[
= 17 - 4(9) + 6(8) - 4(-6) + 2
\]

\[
= 17 - 36 + 48 + 24 + 2 = 55
\]
5.1.2 Finding the missing terms

Using the difference operators and shifting operator we can able to find the missing terms.

Example 5.10

From the following table find the missing value

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f(x)</td>
<td>45.0</td>
<td>49.2</td>
<td>54.1</td>
<td>-</td>
<td>67.4</td>
</tr>
</tbody>
</table>

Solution:

Since only four values of \(f(x) \) are given, the polynomial which fits the data is of degree three. Hence fourth differences are zeros.

\[
\begin{align*}
\Delta^4 y_0 &= 0, \quad \therefore (E - 1)^4 y_0 = 0 \\
(E^4 - 4E^3 + 6E^2 - 4E + 1) y_0 &= 0 \\
E^4 y_0 - 4E^3 y_0 + 6E^2 y_0 - 4Ey_0 + y_0 &= 0 \\
y_4 - 4y_3 + 6y_2 - 4y_1 + y_0 &= 0 \\
67.4 - 4y_3 + 6(54.1) - 4(49.2) + 45 &= 0 \\
240.2 &= 4y_3 \\
\therefore y_3 &= 60.05
\end{align*}
\]

Example 5.11

Estimate the production for 1964 and 1966 from the following data

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Prod</td>
<td>200</td>
<td>220</td>
<td>260</td>
<td>-</td>
<td>350</td>
<td>-</td>
<td>430</td>
</tr>
</tbody>
</table>

Solution:

Since five values are given, the polynomial which fits the data is of degree four.

Hence \(\Delta^5 y_k = 0 \) (ie) \((E - 1)^5 y_k = 0 \)

i.e., \(\Delta^5 y_k = 0 \) (ie) \((E - 1)^5 y_k = 0 \)

\[
\begin{align*}
E^5 y_k - 5E^4 y_k + 10E^3 y_k - 10E^2 y_k + 5Ey_k - y_k &= 0 \\
\therefore y_k &= 0
\end{align*}
\]

Put \(k = 0 \) in (1)
\[E^5y_0 - 5E^4y_0 + 10E^3y_0 - 10E^2y_0 + 5Ey_0 - y_0 = 0 \]
\[y_5 - 5y_4 + 10y_3 - 10y_2 + 5y_1 - y_0 = 0 \]
\[y_5 - 5(350) + 10y_3 - 10(260) + 5(220) - 200 = 0 \]
\[y_5 + 10y_3 = 3450 \quad \text{(2)} \]

Put \(k = 1 \) in (1)

\[E^3y_1 - 5E^2y_1 + 10E^1y_1 - 10E^0y_1 - y_1 = 0 \]
\[y_6 - 5y_5 + 10y_4 - 10y_3 - y_1 = 0 \]
\[430 - 5y_5 + 10(350) - 10y_3 + 5(260) - 220 = 0 \]
\[5y_5 + 10y_3 = 5010 \quad \text{(3)} \]

(3) – (2) \(\Rightarrow \) \[4y_5 = 1560 \]
\[y_5 = 390 \]

From \(390 + 10y_3 = 3450 \)
\[10y_3 = 3450 - 390 \]
\[y_3 \cong 306 \]

Exercise 5.1

1. Evaluate \(\Delta(\log ax) \).
2. If \(y = x^3 - x^2 + x - 1 \) calculate the values of \(y \) for \(x = 0,1,2,3,4,5 \) and form the forward differences table.
3. If \(h = 1 \) then prove that \((E^{-1}\Delta)x^3 = 3x^2 - 3x + 1 \).
4. If \(f(x) = x^2 + 3x \) then show that \(\Delta f(x) = 2x + 4 \)
5. Evaluate \(\Delta \left[\frac{1}{(x+1)(x+2)} \right] \) by taking '1' as the interval of differencing
6. Find the missing entry in the following table

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>y_x</td>
<td>1</td>
<td>3</td>
<td>9</td>
<td>-</td>
<td>81</td>
</tr>
</tbody>
</table>

7. Following are the population of a district

<table>
<thead>
<tr>
<th>Year (x)</th>
<th>1881</th>
<th>1891</th>
<th>1901</th>
<th>1911</th>
<th>1921</th>
<th>1931</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population (y) Thousands</td>
<td>363</td>
<td>391</td>
<td>421</td>
<td>-</td>
<td>467</td>
<td>501</td>
</tr>
</tbody>
</table>

Find the population of the year 1911

8. Find the missing entries from the following.

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>y = f(x)</td>
<td>0</td>
<td>-</td>
<td>8</td>
<td>15</td>
<td>-</td>
<td>35</td>
</tr>
</tbody>
</table>

5.2 Interpolation

Consider the profit of a manufacturing company in various years as given below

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Profit (Rs. in lakhs)</td>
<td>25</td>
<td>29</td>
<td>24</td>
<td>30</td>
<td>32</td>
<td>31</td>
</tr>
</tbody>
</table>

The profit for the year 1989 is not available. To estimate the profit for 1989 we use the technique called interpolation. Let \(x \) denote the year and \(y \) denote the profit. The independent variable \(x \) is called the argument and the dependent variable \(y \) is called the entry. If \(y \) is to be estimated for the value of \(x \) between two extreme points in a set of values, it is called interpolation.

If \(y \) is to be estimated for the values of \(x \) which lies outside the given set of the values of it, is called extrapolation.
5.2.1 Methods of interpolation

There are two methods for interpolation. One is Graphical method and the other one is algebraic method.

5.2.2 Graphical method

We are given the 'n' values of \(x \) and the corresponding values of \(y \) for given function \(y = f(x) \). We plot these \(n \) observed points \((x_i, y_i), i = 1, 2, 3,...\) and draw a free hand curve passing through these plotted points. From the graph so obtained, we can find out the value of \(y \) for any intermediate value of \(x \). There is one drawback in the graphic method which states that the value of \(y \) obtained is the estimated value of \(y \). The estimated value of \(y \) differs from the actual value of \(y \).

Example 5.12

Using graphic method, find the value of \(y \) when \(x = 38 \) from the following data:

<table>
<thead>
<tr>
<th>(x)</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>63</td>
<td>55</td>
<td>44</td>
<td>34</td>
<td>29</td>
<td>22</td>
</tr>
</tbody>
</table>

Solution:

From the graph in Fig. 5.1 we find that for \(x = 38 \), the value of \(y \) is equal to 35

Steps in Graphic method:

Take a suitable scale for the values of \(x \) and \(y \), and plot the various points on the graph paper for given values of \(x \) and \(y \).

Draw a suitable curve passing through the plotted points.

Find the point corresponding to the value \(x = 38 \) on the curve and then read the corresponding value of \(y \) on the \(y \)- axis, which will be the required interpolated valu

5.2.3 Algebraic method

Newton's Gregory forward interpolation formula (or) Newton's forward interpolation formula (for equal intervals).
Let \(y = f(x) \) denote a polynomial of degree \(n \) which takes \((n+1)\) values. Let them be \(y_0, y_1, y_2, \ldots, y_n \) corresponding to the values \(x_0, x_1, \ldots, x_n \) respectively.

The values of \(x(x_0, x_1, x_2, \ldots, x_n) \) are at equidistant.

(i.e.) \(x_1 = x_0 + h, \ x_2 = x_0 + 2h, \ x_3 = x_0 + 3h, \ldots, x_n = x_0 + nh \)

Then the value of \(f(x) \) at \(x = x_0 + nh \) is given by

\[
f(x_0 + nh) = f(x_0) + \frac{n}{1!} \Delta f(x_0) + \frac{n(n-1)}{2!} \Delta^2 f(x_0) + \frac{n(n-1)(n-2)}{3!} \Delta^3 f(x_0) + \ldots
\]

(or) \(y_{(x = x_0 + nh)} = y_0 + \frac{n}{1!} \Delta y_0 + \frac{n(n-1)}{2!} \Delta^2 y_0 + \frac{n(n-1)(n-2)}{3!} \Delta^3 y_0 + \ldots \) where \(n = \frac{x - x_0}{h} \)

Newton's Gregory backward interpolation Formula.

Note

Newton's forward interpolation formula is used when the value of \(y \) is required near the beginning of the table.

Newton's forward interpolation formula cannot be used when the value of \(y \) is required near the end of the table. For this we use another formula, called Newton’s Gregory backward interpolation formula.

Then the value of \(f(x) \) at \(x = x_n + nh \) is given by

\[
f(x_n + nh) = f(x_n) + \frac{n}{1!} \nabla f(x_n) + \frac{n(n+1)}{2!} \nabla^2 f(x_n) + \frac{n(n+1)(n+2)}{3!} \nabla^3 f(x_n) + \ldots
\]

(or) \(y_{(x = x_n + nh)} = y_n + \frac{n}{1!} \nabla y_n + \frac{n(n+1)}{2!} \nabla^2 y_n + \frac{n(n+1)(n+2)}{3!} \nabla^3 y_n + \ldots \) when \(n = \frac{x - x_n}{h} \)

Note

Newton’s backward interpolation formula is used when the value of \(y \) is required near the end of the table.
Example 5.13

Using Newton's formula for interpolation estimate the population for the year 1905 from the table:

<table>
<thead>
<tr>
<th>Year</th>
<th>1891</th>
<th>1901</th>
<th>1911</th>
<th>1921</th>
<th>1931</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>98,752</td>
<td>1,32,285</td>
<td>1,68,076</td>
<td>1,95,670</td>
<td>2,46,050</td>
</tr>
</tbody>
</table>

Solution

To find the population for the year 1905 (i.e) the value of \(y \) at \(x = 1905 \)

Since the value of \(y \) is required near the beginning of the table, we use the Newton's forward interpolation formula.

\[y_{(x=x_0+nh)} = y_0 + \frac{n}{1!} \Delta y_0 + \frac{n(n-1)}{2!} \Delta^2 y_0 + \frac{n(n-1)(n-2)}{3!} \Delta^3 y_0 + ... \]

To find \(y \) at \(x = 1905 \) \(\therefore x_0 + nh = 1905 \), \(x_0 = 1891, h = 10 \)

\[1891 + n(10) = 1905 \quad \Rightarrow n = 1.4 \]

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
x & y & \Delta y & \Delta^2 y & \Delta^3 y & \Delta^4 y \\
\hline
1891 & 98,752 & & & & \\
1901 & 1,32,285 & 33,533 & & & \\
1911 & 1,68,076 & 2,258 & 35,791 & -10,435 & \\
1921 & 1,95,670 & -8,177 & 27,614 & 41,376 & \\
1931 & 2,46,050 & & 50,360 & & \\
\hline
\end{array}
\]

\[
y_{(x=1905)} = 98,752 + (1.4)(33533) + \frac{(1.4)(0.4)}{2}(2258) + \frac{(1.4)(0.4)(-0.6)}{6}(-10435) + \frac{(1.4)(0.6)(-0.6)(-1.6)}{24}(41376)
\]

\[= 98,752 + 46946.2 + 639.8 + 584.36 + 1390.23 \]

\[= 1,48,312.59 \]

\[\cong 1,48,313 \]
Example 5.14

The values of \(y = f(x) \) for \(x = 0, 1, 2, ..., 6 \) are given by

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>24</td>
</tr>
<tr>
<td>6</td>
<td>38</td>
</tr>
</tbody>
</table>

Estimate the value of \(y(3.2) \) using forward interpolation formula by choosing the four values that will give the best approximation.

Solution:

Since we apply the forward interpolation formula, last four values of \(f(x) \) are taken into consideration (Take the values from \(x = 3 \)).

The forward interpolation formula is

\[
y(x = x_0 + nh) = y_0 + \frac{n}{1!} \Delta y_0 + \frac{n(n-1)}{2!} \Delta^2 y_0 + \frac{n(n-1)(n-2)}{3!} \Delta^3 y_0 + ...
\]

\(x_0 + nh = 3.2, x_0 = 3, h = 1 \)

\(\therefore \quad n = \frac{1}{5} \)

The difference table is

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
<th>(\Delta y)</th>
<th>(\Delta^2 y)</th>
<th>(\Delta^3 y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>16</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td></td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>24</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>38</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
y(x = 3.2) = 16 + \frac{1}{5} (4) + \frac{1}{5} \left(\frac{-4}{5} \right) \left(\frac{-9}{5} \right) \times 10
\]

\[
= 16 + 0.8 + 0 + 0.48
\]

\[
= 17.28
\]
Example 5.15

From the following table find the number of students who obtained marks less than 45.

<table>
<thead>
<tr>
<th>Marks</th>
<th>30-40</th>
<th>40-50</th>
<th>50-60</th>
<th>60-70</th>
<th>70-80</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of Students</td>
<td>31</td>
<td>42</td>
<td>51</td>
<td>35</td>
<td>31</td>
</tr>
</tbody>
</table>

Solution:

Let \(x \) be the marks and \(y \) be the number of students

By converting the given series into cumulative frequency distribution, the difference table is as follows.

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
<th>(\Delta y)</th>
<th>(\Delta^2 y)</th>
<th>(\Delta^3 y)</th>
<th>(\Delta^4 y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 40</td>
<td>31</td>
<td>42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>73</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>124</td>
<td>-16</td>
<td>37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>159</td>
<td>-4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>190</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[y_{(x=x_0+nh)} = y_0 + \frac{n}{1!} \Delta y_0 + \frac{n(n-1)}{2!} \Delta^2 y_0 + \frac{n(n-1)(n-2)}{3!} \Delta^3 y_0 + \ldots \]

To find \(y \) at \(x = 45 \) \(\therefore x_0 + nh = 45 \), \(x_0 = 40, h = 10 \) \(\Rightarrow n = \frac{1}{2} \)

\[y_{(x=45)} = 31 + \frac{1}{2} \times 42 + \frac{1}{2} \left(\frac{-1}{2} \right) \left(\frac{-1}{2} \right) \left(\frac{-3}{2} \right) \times (-25) + \frac{1}{2} \left(\frac{-1}{2} \right) \left(\frac{-3}{2} \right) \left(\frac{-5}{2} \right) \times (37) \]

\[= 31 + 21 - \frac{9}{8} - \frac{25}{16} - \frac{37 \times 15}{128} \]

\[= 47.867 \approx 48 \]
Example 5.16

Using appropriate interpolation formula find the number of students whose weight is between 60 and 70 from the data given below.

<table>
<thead>
<tr>
<th>Weight in lbs</th>
<th>0-40</th>
<th>40-60</th>
<th>60-80</th>
<th>80-100</th>
<th>100-120</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of Students</td>
<td>250</td>
<td>120</td>
<td>100</td>
<td>70</td>
<td>50</td>
</tr>
</tbody>
</table>

Solution:

Let \(x \) be the weight and \(y \) be the number of students.

Difference table of cumulative frequencies are given below.

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
<th>(\Delta y)</th>
<th>(\Delta^2 y)</th>
<th>(\Delta^3 y)</th>
<th>(\Delta^4 y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Below 40</td>
<td>250</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>370</td>
<td>-20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>470</td>
<td>-30</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>540</td>
<td>-20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>590</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Let us calculate the number of students whose weight is below 70. For this we use forward difference formula.

\[
y_{(x = x_0 + nh)} = y_0 + \frac{n}{1!} \Delta y_0 + \frac{n(n-1)}{2!} \Delta^2 y_0 + \frac{n(n-1)(n-2)}{3!} \Delta^3 y_0 + \ldots
\]

To find \(y \) at \(x = 70 \) \(\therefore x_0 + nh = 70, x_0 = 40, h = 20 \)

\[
40 + n(20) = 70 \Rightarrow n = 1.5
\]

\[
\therefore y_{(x = 70)} = 250 + 1.5(120) + \frac{(1.5)(0.5)}{2!}(-20) + \frac{(1.5)(0.5)(-0.5)}{3!}(-10) + \frac{(1.5)(0.5)(-0.5)(-1.5)}{4!}(20)
\]

\[
= 250 + 180 - 7.5 - 0.625 + 0.46875
\]

\[
= 423.59 \approx 424.
\]

Number of students whose weight is between

60 and 70 = \(y(70) - y(60) = 424 - 370 = 54 \)
Example 5.17

The population of a certain town is as follows

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Population in lakhs : y</td>
<td>20</td>
<td>24</td>
<td>29</td>
<td>36</td>
<td>46</td>
<td>51</td>
</tr>
</tbody>
</table>

Using appropriate interpolation formula, estimate the population during the period 1946.

Solution:

Here we find the population for year 1946. (i.e) the value of y at $x=1946$. Since the value of y is required near the beginning of the table, we use the Newton’s forward interpolation formula.

$$y(x=x_0+nh) = y_0 + \frac{n}{1!} \Delta y_0 + \frac{n(n-1)}{2!} \Delta^2 y_0 + \frac{n(n-1)(n-2)}{3!} \Delta^3 y_0 + ...$$

To find y at $x = 1946$ $\therefore x_0 + nh = 1946$, $x_0 = 1941$, $h = 10$

1941 + n(10) = 1946 $\Rightarrow n = 0.5$

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>Δy</th>
<th>$\nabla^2 y$</th>
<th>$\nabla^3 y$</th>
<th>$\nabla^4 y$</th>
<th>$\nabla^5 y$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1941</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1951</td>
<td>24</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1961</td>
<td>29</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>1</td>
<td>-9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1971</td>
<td>36</td>
<td>3</td>
<td>-9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>-8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1981</td>
<td>46</td>
<td>-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1991</td>
<td>51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$$y(x=1946) = 20 + \frac{0.5}{1!}(4) + \frac{0.5(0.5-1)}{2!}(1) + \frac{0.5(0.5-1)(0.5-2)}{3!}(1)$$

$$\quad + \frac{0.5(0.5-1)(0.5-2)(0.5-3)}{4!}(0) + \frac{0.5(0.5-1)(0.5-2)(0.5-3)(0.5-4)}{5!}(-9)$$

18th Std. Business Mathematics and Statistics
Example 5.18

The following data are taken from the steam table.

<table>
<thead>
<tr>
<th>Temperature 0C</th>
<th>140</th>
<th>150</th>
<th>160</th>
<th>170</th>
<th>180</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure kg fl/cm^2</td>
<td>3.685</td>
<td>4.854</td>
<td>6.302</td>
<td>8.076</td>
<td>10.225</td>
</tr>
</tbody>
</table>

Find the pressure at temperature $t = 175^0$

Solution:

Since the pressure required is at the end of the table, we apply Backward interpolation formula. Let temperature be x and the pressure be y.

$$y(x=x_n+nh) = y_n + \frac{n}{1!} \Delta y_n + \frac{n(n+1)}{2!} \Delta^2 y_n + \frac{n(n+1)(n+2)}{3!} \Delta^3 y_n + ...$$

To find y at $x = 175$

∴ $x_n + nh = 175, x_n = 180, h = 10 \Rightarrow n = -0.5$

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>Δy</th>
<th>$\Delta^2 y$</th>
<th>$\Delta^3 y$</th>
<th>$\Delta^4 y$</th>
</tr>
</thead>
<tbody>
<tr>
<td>140</td>
<td>3.685</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>4.854</td>
<td>1.169</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>6.032</td>
<td>0.279</td>
<td>0.326</td>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td>170</td>
<td>8.076</td>
<td>0.375</td>
<td>0.049</td>
<td></td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>10.225</td>
<td></td>
<td>2.149</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

∴ $y(x=175) = 10.225 + (-0.5)(2.149) + \frac{(-0.5)(0-5)}{2!}(0.375)$

$$+ \frac{(-0.5)(0-5)(1.5)}{3!}(0.049) + \frac{(-0.5)(0.5)(1.5)(2.5)}{4!}(0.002)$$

$$= 10.225 - 1.0745 - 0.046875 - 0.0030625 - 0.000078125$$

$$= 9.10048438$$

$$= 9.1$$
Example 5.19

Calculate the value of y when $x = 7.5$ from the table given below

<table>
<thead>
<tr>
<th>x</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>1</td>
<td>8</td>
<td>27</td>
<td>64</td>
<td>125</td>
<td>216</td>
<td>343</td>
<td>512</td>
</tr>
</tbody>
</table>

Solution:

Since the required value is at the end of the table, apply backward interpolation formula.

\[
y_{(x_n + nh)} = y_n + \frac{n}{1!} \Delta y_n + \frac{n(n+1)}{2!} \Delta^2 y_n + \frac{n(n+1)(n+2)}{3!} \Delta^3 y_n + \ldots
\]

To find y at $x = 7.5$, $x_n = 7$, $n = 8$, $h = 1$, \Rightarrow $n = -0.5$

\[
y_{(x=7.5)} = 512 + \frac{-0.5}{1!} 169 + \frac{-0.5(-0.5+1)}{2!} 42 + \frac{-0.5(-0.5+1)(-0.5+2)}{3!} 6 + \ldots
\]

\[
= 421.87
\]

Example 5.20

From the following table of half-yearly premium for policies maturing at different ages. Estimate the premium for policies maturing at the age of 63.

<table>
<thead>
<tr>
<th>Age</th>
<th>45</th>
<th>50</th>
<th>55</th>
<th>60</th>
<th>65</th>
</tr>
</thead>
<tbody>
<tr>
<td>Premium</td>
<td>114.84</td>
<td>96.16</td>
<td>83.32</td>
<td>74.48</td>
<td>68.48</td>
</tr>
</tbody>
</table>
Solution:

Let age = x and premium = y.

To find \(y \) at \(x = 63 \). So apply Newton’s backward interpolation formula:

\[
y_{(x=x_n+nh)} = y_n + \frac{n}{1!} y'_n + \frac{n(n+1)}{2!} y''_n + \frac{n(n+1)(n+2)}{3!} y'''_n + \ldots
\]

To find \(y \) at \(x = 63 \):
\[x_n + nh = 63, \quad x_n = 68.48, h = 5 \Rightarrow n = -\frac{2}{5} \]

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
<th>(\nabla y)</th>
<th>(\nabla^2 y)</th>
<th>(\nabla^3 y)</th>
<th>(\nabla^4 y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>114.84</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>96.16</td>
<td>-18.68</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>83.32</td>
<td>-12.84</td>
<td>-1.84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>74.48</td>
<td>-8.84</td>
<td>-1.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>68.48</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
y_{(x=63)} = 68.48 + \frac{-2}{5} (-6) + \frac{-2}{5} \left(\frac{-2}{5} + 1 \right) \frac{2.84}{2!} + \frac{-2}{5} \left(\frac{-2}{5} + 1 \right) \left(\frac{-2}{5} + 2 \right) \frac{-1.16}{3!} \]

\[+ \frac{-2}{5} \left(\frac{-2}{5} + 1 \right) \left(\frac{-2}{5} + 2 \right) \left(\frac{-2}{5} + 3 \right) \frac{0.68}{3!} \]

\[= 68.48 + 2.4 - 0.3408 + 0.07424 - 0 - 0.028288 \]

\[y(63) = 70.437 \]

Example 5.21

Find a polynomial of degree two which takes the values

<table>
<thead>
<tr>
<th>(x)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>11</td>
<td>16</td>
<td>22</td>
<td>29</td>
</tr>
</tbody>
</table>

Solution:

We will use Newton’s backward interpolation formula to find the polynomial.

\[
y_{(x=x_n+nh)} = y_n + \frac{n}{1!} y'_n + \frac{n(n+1)}{2!} y''_n + \frac{n(n+1)(n+2)}{3!} y'''_n + \ldots
\]

Numerical Methods 191
To find \(y \) in terms of \(x \) : \(x_n + nh = x \), \(x_n = 7, h = 1 \) \(\Rightarrow n = x - 7 \)

\[
y_{(x)} = 29 + (x - 7)\left(\frac{7}{2}\right) + \frac{(x - 7)(x - 6)}{2}
\]

\[
= 29 + 7x - 49 + \frac{1}{2}\left(x^2 - 13x + 42\right)
\]

\[
= \frac{1}{2}\left[58 + 14x - 98 + x^2 - 13x + 42\right]
\]

\[
= \frac{1}{2}\left[x^2 + x + 2\right]
\]

5.2.4 Lagrange’s interpolation formula

The Newton’s forward and backward interpolation formulae can be used only when the values of \(x \) are at equidistant. If the values of \(x \) are at equidistant or not at equidistant, we use Lagrange’s interpolation formula.

Let \(y = f(x) \) be a function such that \(f(x) \) takes the values \(y_0, y_1, y_2, \ldots, y_n \) corresponding to \(x = x_0, x_1, x_2, \ldots, x_n \). That is \(y_i = f(x_i), i = 0, 1, 2, \ldots, n \). Now, there are \((n+1)\) paired values \((x_i, y_i), i = 0, 1, 2, \ldots, n\) and hence \(f(x) \) can be represented by a polynomial function of degree \(n \) in \(x \).

Then the Lagrange’s formula is

\[
y = f(x) = \frac{(x-x_1)(x-x_2)\ldots(x-x_n)}{(x_0-x_1)(x_0-x_2)\ldots(x_0-x_n)}y_0 + \frac{(x-x_0)(x-x_2)\ldots(x-x_n)}{(x_1-x_0)(x_1-x_2)\ldots(x_1-x_n)}y_1
\]

\[
+ \ldots + \frac{(x-x_0)(x-x_1)\ldots(x-x_{n-1})}{(x_n-x_0)(x_n-x_1)\ldots(x_n-x_{n-1})}y_n
\]
Example 5.22

Using Lagrange’s interpolation formula find \(y(10) \) from the following table:

<table>
<thead>
<tr>
<th>(x)</th>
<th>5</th>
<th>6</th>
<th>9</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>16</td>
</tr>
</tbody>
</table>

Solution:

Here the intervals are unequal. By Lagrange’s interpolation formula we have

\[
x_0 = 5, x_1 = 6, x_2 = 9, x_3 = 11
\]

\[
y_0 = 12, y_1 = 13, y_2 = 14, y_3 = 16
\]

\[
y = f(x) = \frac{(x-x_1)(x-x_2)(x-x_3)}{(x_0-x_1)(x_0-x_2)(x_0-x_3)} \times y_0 + \frac{(x-x_0)(x-x_2)(x-x_3)}{(x_1-x_0)(x_1-x_2)(x_1-x_3)} \times y_1
\]

\[
+ \frac{(x-x_0)(x-x_1)(x-x_3)}{(x_2-x_0)(x_2-x_1)(x_2-x_3)} \times y_2 + \frac{(x-x_0)(x-x_1)(x-x_2)}{(x_3-x_0)(x_3-x_1)(x_3-x_2)} \times y_3
\]

\[
y = \frac{(x-6)(x-9)(x-11)}{(5-6)(5-9)(5-11)}(12) + \frac{(x-5)(x-9)(x-11)}{(6-5)(6-9)(6-11)}(13)
\]

\[
+ \frac{(x-5)(x-6)(x-11)}{(9-5)(9-6)(9-11)}(14) + \frac{(x-5)(x-6)(x-9)}{(11-5)(11-6)(11-9)}(16)
\]

Put \(x = 10 \)

\[
y(10) = f(10) = \frac{4(1)(-1)}{(-1)(-4)(-6)}(12) + \frac{5(1)(-1)}{(1)(-3)(-5)}(13) + \frac{5(4)(-1)}{4(3)(-2)}(14) + \frac{5(4)(1)}{6(5)(2)}(16)
\]

\[
= \frac{1}{6}(12) - \frac{13}{3} + \frac{5}{3 \times 2} + \frac{4 \times 16}{12}
\]

\[= 14.6663\]

Exercise 5.2

1. Using graphic method, find the value of \(y \) when \(x = 48 \) from the following data:

<table>
<thead>
<tr>
<th>(x)</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>6.2</td>
<td>7.2</td>
<td>9.1</td>
<td>12</td>
</tr>
</tbody>
</table>

2. The following data relates to indirect labour expenses and the level of output

<table>
<thead>
<tr>
<th>Months</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>June</th>
</tr>
</thead>
<tbody>
<tr>
<td>Units of output</td>
<td>200</td>
<td>300</td>
<td>400</td>
<td>640</td>
<td>540</td>
<td>580</td>
</tr>
<tr>
<td>Indirect labour expenses (Rs)</td>
<td>2500</td>
<td>2800</td>
<td>3100</td>
<td>3820</td>
<td>3220</td>
<td>3640</td>
</tr>
</tbody>
</table>

Estimate the expenses at a level of output of 350 units, by using graphic method.
3. Using Newton's forward interpolation formula find the cubic polynomial.

\[f(x) = a_0 + a_1(x-1) + a_2(x-1)(x-2) + a_3(x-1)(x-2)(x-3) \]

<table>
<thead>
<tr>
<th>(x)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>10</td>
</tr>
</tbody>
</table>

4. The population of a city in a census taken once in 10 years is given below. Estimate the population in the year 1955.

<table>
<thead>
<tr>
<th>Year</th>
<th>1951</th>
<th>1961</th>
<th>1971</th>
<th>1981</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population in lakhs</td>
<td>35</td>
<td>42</td>
<td>58</td>
<td>84</td>
</tr>
</tbody>
</table>

5. In an examination the number of candidates who secured marks between certain interval were as follows:

<table>
<thead>
<tr>
<th>Marks</th>
<th>0-19</th>
<th>20-39</th>
<th>40-59</th>
<th>60-79</th>
<th>80-99</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of candidates</td>
<td>41</td>
<td>62</td>
<td>65</td>
<td>50</td>
<td>17</td>
</tr>
</tbody>
</table>

Estimate the number of candidates whose marks are less than 70.

6. Find the value of \(f(x) \) when \(x = 32 \) from the following table

<table>
<thead>
<tr>
<th>(x)</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td>15.9</td>
<td>14.9</td>
<td>14.1</td>
<td>13.3</td>
<td>12.5</td>
</tr>
</tbody>
</table>

7. The following data gives the melting point of a alloy of lead and zinc where \(t \) is the temperature in degree\(c \) and \(P \) is the percentage of lead in the alloy

<table>
<thead>
<tr>
<th>(P)</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T)</td>
<td>180</td>
<td>204</td>
<td>226</td>
<td>250</td>
<td>276</td>
<td>304</td>
</tr>
</tbody>
</table>

Find the melting point of the alloy containing 84 percent lead.

8. Find \(f(2.8) \) from the following table.

<table>
<thead>
<tr>
<th>(x)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td>1</td>
<td>2</td>
<td>11</td>
<td>34</td>
</tr>
</tbody>
</table>

9. Using interpolation estimate the output of a factory in 1986 from the following data

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Output in 1000 tones</td>
<td>25</td>
<td>60</td>
<td>80</td>
<td>170</td>
</tr>
</tbody>
</table>

10. Use Lagrange's formula and estimate from the following data the number of workers getting income not exceeding Rs. 26 per month.

| Income not exceeding (\(₹ \)) | 15 | 25 | 30 | 35 |
| No. of workers | 36 | 40 | 45 | 48 |
11. Using interpolation estimate the business done in 1985 from the following data

<table>
<thead>
<tr>
<th>Year</th>
<th>1982</th>
<th>1983</th>
<th>1984</th>
<th>1986</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business done (in lakhs)</td>
<td>150</td>
<td>235</td>
<td>365</td>
<td>525</td>
</tr>
</tbody>
</table>

12. Using interpolation, find the value of \(f(x) \) when \(x = 15 \)

<table>
<thead>
<tr>
<th>(x)</th>
<th>3</th>
<th>7</th>
<th>11</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td>42</td>
<td>43</td>
<td>47</td>
<td>60</td>
</tr>
</tbody>
</table>

Exercise 5.3

Choose the correct Answer

1. \(\Delta^2 y_0 = \)
 (a) \(y_2 - 2y_1 + y_0 \) (b) \(y_2 + 2y_1 - y_0 \) (c) \(y_2 + 2y_1 + y_0 \) (d) \(y_2 + y_1 + 2y_0 \)

2. \(\Delta f(x) = \)
 (a) \(f(x + h) \) (b) \(f(x) - f(x + h) \) (c) \(f(x + h) - f(x) \) (d) \(f(x) - f(x - h) \)

3. \(E \equiv \)
 (a) \(1 + \Delta \) (b) \(1 - \Delta \) (c) \(1 + \nabla \) (d) \(1 - \nabla \)

4. If \(h = 1 \), then \(\Delta (x^2) = \)
 (a) \(2x \) (b) \(2x - 1 \) (c) \(2x + 1 \) (d) \(1 \)

5. If \(c \) is a constant then \(\Delta c = \)
 (a) \(c \) (b) \(\Delta \) (c) \(\Delta^2 \) (d) \(0 \)

6. If \(m \) and \(n \) are positive integers then \(\Delta^m \Delta^n f(x) = \)
 (a) \(\Delta^{m+n} f(x) \) (b) \(\Delta^m f(x) \) (c) \(\Delta^n f(x) \) (d) \(\Delta^{m-n} f(x) \)

7. If \('n' \) is a positive integer \(\Delta^n \left[\Delta^{-n} f(x) \right] = \)
 (a) \(f(2x) \) (b) \(f(x + h) \) (c) \(f(x) \) (d) \(\Delta f(x) \)

8. \(E f(x) = \)
 (a) \(f(x - h) \) (b) \(f(x) \) (c) \(f(x + h) \) (d) \(f(x + 2h) \)
9. \(\nabla \equiv \)
(a) \(1 + E \)
(b) \(1 - E \)
(c) \(1 - E^{-1} \)
(d) \(1 + E^{-1} \)

10. \(\nabla f(a) = \)
(a) \(f(a) + f(a - h) \)
(b) \(f(a) - f(a + h) \)
(c) \(f(a) - f(a - h) \)
(d) \(f(a) \)

11. For the given points \((x_0, y_0)\) and \((x_1, y_1)\) the Lagrange's formula is
(a) \(y(x) = \frac{x - x_1}{x_0 - x_1} y_0 + \frac{x - x_0}{x_1 - x_0} y_1 \)
(b) \(y(x) = \frac{x_1 - x}{x_0 - x_1} y_0 + \frac{x - x_0}{x_1 - x_0} y_1 \)
(c) \(y(x) = \frac{x - x_1}{x_0 - x_1} y_1 + \frac{x - x_0}{x_1 - x_0} y_0 \)
(d) \(y(x) = \frac{x_1 - x}{x_0 - x_1} y_1 + \frac{x - x_0}{x_1 - x_0} y_0 \)

12. Lagrange's interpolation formula can be used for
(a) equal intervals only
(b) unequal intervals only
(c) both equal and unequal intervals
(d) none of these.

13. If \(f(x) = x^2 + 2x + 2 \) and the interval of differencing is unity then \(\Delta f(x) \)
 (a) \(2x - 3 \)
 (b) \(2x + 3 \)
 (c) \(x + 3 \)
 (d) \(x - 3 \)

14. For the given data find the value of \(\Delta^3 y_0 \) is

| \(x \) | 5 | 6 | 9 | 11 |
| \(y \) | 12 | 13 | 15 | 18 |

(a) 1
(b) 0
(c) 2
(d) -1

Miscellaneous Problems

1. If \(f(x) = e^{ax} \) then show that \(f(0), \Delta f(0), \Delta^2 f(0) \) are in G.P

2. Prove that
 i) \((1 + \Delta)(1 - \nabla) = 1 \)
 ii) \(\Delta \nabla = \nabla - \Delta \)
 (iii) \(E \nabla = \Delta = \nabla \Delta \)

3. A second degree polynomial passes through the point \((1, -1)\) \((2, -1)\) \((3, 1)\) \((4, 5)\). Find the polynomial.

4. Find the missing figures in the following table

| \(x \) | 0 | 5 | 10 | 15 | 20 | 25 |
| \(y \) | 7 | 11 | - | 18 | - | 32 |

5. Find \(f(0.5) \) if \(f(-1) = 202, f(0) = 175, f(1) = 82 \) and \(f(2) = 55 \)
6. From the following data find \(y \) at \(x = 43 \) and \(x = 84 \)

<table>
<thead>
<tr>
<th>(x)</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>184</td>
<td>204</td>
<td>226</td>
<td>250</td>
<td>276</td>
<td>304</td>
</tr>
</tbody>
</table>

7. The area \(A \) of circle of diameter \('d' \) is given for the following values

<table>
<thead>
<tr>
<th>(D)</th>
<th>80</th>
<th>85</th>
<th>90</th>
<th>95</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>5026</td>
<td>5674</td>
<td>6362</td>
<td>7088</td>
<td>7854</td>
</tr>
</tbody>
</table>

Find the approximate values for the areas of circles of diameter 82 and 91 respectively.

8. If \(u_0 = 560, u_1 = 556, u_2 = 520, u_4 = 385 \), show that \(u_3 = 465 \)

9. From the following table obtain a polynomial of degree \(y \) in \(x \)

<table>
<thead>
<tr>
<th>(x)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>1</td>
<td>−1</td>
<td>1</td>
<td>−1</td>
<td>1</td>
</tr>
</tbody>
</table>

10. Using Lagrange's interpolation formula find a polynomial which passes through the points \((0, -12), (1, 0), (3, 6) \) and \((4, 12) \).

Summary

In this chapter we have acquired the knowledge of

- \(\Delta f(x) = f(x + h) - f(x) \)
- \(\nabla f(x) = f(x) - f(x - h) \)
- \(\nabla f(x + h) = \Delta f(x) \)
- \(E f(x) = f(x + h) \)
- \(E^n f(x) = f(x + nh) \)
- Newton's forward interpolation formula:
 \[y_{(x=x_0+nh)} = y_0 + \frac{n}{1!} \Delta y_0 + \frac{n(n-1)}{2!} \Delta^2 y_0 + \frac{n(n-1)(n-2)}{3!} \Delta^3 y_0 + ... \]
- Newton's backward interpolation formula:
 \[y_{(x=x_n+nh)} = y_n + \frac{n}{1!} \nabla y_n + \frac{n(n+1)}{2!} \nabla^2 y_n + \frac{n(n+1)(n+2)}{3!} \nabla^3 y_n + ... \]
- Lagrange's interpolation formula:
 \[y = f(x) = \frac{(x-x_1)(x-x_2)...(x-x_n)}{(x_0-x_1)(x_0-x_2)...(x_0-x_n)} y_0 + \frac{(x-x_0)(x-x_2)...(x-x_n)}{(x_1-x_0)(x_1-x_2)...(x_1-x_n)} y_1 + ... + \frac{(x-x_0)(x-x_1)...(x-x_{n-1})}{(x_n-x_0)(x_n-x_1)...(x_n-x_{n-1})} y_n \]
<table>
<thead>
<tr>
<th>GLOSSARY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerical</td>
</tr>
<tr>
<td>Interpolation</td>
</tr>
<tr>
<td>Extrapolation</td>
</tr>
<tr>
<td>Graphic method</td>
</tr>
<tr>
<td>Algebraic methods</td>
</tr>
<tr>
<td>Finite differences</td>
</tr>
<tr>
<td>Gregory-Newton’s formulae</td>
</tr>
<tr>
<td>Lagrange’s formula</td>
</tr>
<tr>
<td>Forward difference operator</td>
</tr>
<tr>
<td>Backward difference operator</td>
</tr>
<tr>
<td>Shifting operator</td>
</tr>
<tr>
<td>Policy</td>
</tr>
</tbody>
</table>

ICT Corner

Expected Result is shown in this picture

Step 1

Open the Browser, type the URL Link given below (or) Scan the QR Code. GeoGebra work Book named “12th Standard Business Mathematics” will open. In the work book there are two Volumes. Select “Volume-1”.

Step 2

Select the worksheet named “Numerical Methods”

In this Forward Difference table is given. You can type new function in the box given. Calculate and Check the table.

Browse in the link

12th standard Business Mathematics :https://ggbm.at/uzkernwr or Scan the QR Code.
1. Applications of Matrices and Determinants

Exercise 1.1

1. (i) $\rho(A) = 2$ (ii) $\rho(A) = 2$ (iii) $\rho(A) = 1$ (iv) $\rho(A) = 3$
 (v) $\rho(A) = 3$ (vi) $\rho(A) = 3$ (vii) $\rho(A) = 2$ (viii) $\rho(A) = 2$ (ix) $\rho(A) = 2$

2. $\rho(AB) = 3$, $\rho(BA) = 2$

3. $x = 1, y = 3, z = 5$

4. $x = \frac{1}{11}(7 - 16k), \quad y = \frac{1}{11}(3 + k), \quad z = k$

5. $x = 2, y = 1, z = 0$

6. $\lambda = -\frac{7}{2}$

7. $x = 1000, y = 2000, z = 500$

8. $x = 1000, y = 2200, z = 1800$

Exercise 1.2

1. (i) $x = 8, y = -3$ (ii) $x = 1, y = 4$ (iii) $(x, y, z) = (2, -1, 0)$
 (iv) $(x, y, z) = (1, 2, 3)$
 (v) $(x, y, z) = \begin{pmatrix} -1 \\ \frac{1}{2} \\ \frac{1}{3} \end{pmatrix}$

2. Cost per unit of labour is ₹10 Cost per unit of capital is ₹16

3. Amount invested at $4 \frac{3}{4} \%$ is ₹7,300 Amount invested at $6 \frac{1}{2} \%$ is ₹1,300

4. Hourly charges for horse riding is ₹100 and AVT riding is ₹120

5. $(x, y, z) = (2, 3, 1)$

6. Amount invested at 2% is ₹250
 Amount invested at 3% is ₹4,000
 Amount invested at 6% is ₹4,250

Exercise 1.3

1. 36%
2. (i) 54% , 46% (ii) 50%

3. A=56.25%, B=43.75%

4. A=33%, B= 67%
Exercise 1.4

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d)</td>
<td>(b)</td>
<td>(a)</td>
<td>(c)</td>
<td>(d)</td>
<td>(b)</td>
<td>(b)</td>
<td>(d)</td>
<td>(a)</td>
<td>(c)</td>
<td>(c)</td>
<td>(b)</td>
<td>(c)</td>
<td></td>
</tr>
<tr>
<td>(b)</td>
<td>(c)</td>
<td>(c)</td>
<td>(b)</td>
<td>(b)</td>
<td>(a)</td>
<td>(b)</td>
<td>(b)</td>
<td>(c)</td>
<td>(d)</td>
<td>(c)</td>
<td>(a)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Miscellaneous problems
1. \(\rho(A) = 2 \)
2. \(\rho(A) = 3 \)
3. \(\rho(A) = 3 \)
4. The given system is inconsistent and has no solution.
5. \(k = 8 \).
6. The equations are inconsistent when \(k \) assumes any real value other than 0.
7. \(x = 1, y = 2 \) and \(z = 2 \)
8. Cost of wheat is ₹30/kg, Cost of sugar is ₹40/kg and Cost of rice is ₹50/kg.
9. The rates of commission for A, B and C are ₹2, ₹4 and ₹11 respectively.
10. 39%

2. Integral Calculus – I

Exercise: 2.1
1. \(\frac{2}{9}(3x + 5)^{\frac{3}{2}} + c \)
2. \(\frac{81x^5}{5} - \frac{16}{3x^3} - 72x + c \)
3. \(6x - \frac{13x^2}{2} - \frac{5x^3}{3} + c \)
4. \(\frac{2x^2}{9} - \frac{4x^3}{5} + 2x^2 + c \)
5. \(\frac{(4x + 7)^{\frac{3}{2}}}{3} - \frac{(4x + 7)^{\frac{3}{2}}}{2} + c \)
6. \(\frac{1}{3} \left[(x + 1)^{\frac{3}{2}} - (x - 1)^{\frac{3}{2}} \right] + c \)
7. \(b = \frac{13}{2}, c = -2, f(x) = \frac{x^2}{2} + \frac{13}{2}x - 2 \)
8. \(c = -20, f(x) = 2x^4 - x^2 - 20 \)

Exercise: 2.2
1. \(x^2 + \frac{1}{2} \log |x| - 2x + c \)
2. \(\frac{x^4}{4} + \frac{x^3}{3} + 2 \log |x - 1| + c \)
3. \(\frac{x^3}{3} - x^2 + 4x - 8 \log |x + 2| + c \)
4. \(\frac{x^3}{3} - x^2 + 3x - 4 \log |x + 5| + c \)
5. \(11 \log |x - 3| - 8 \log |x - 2| + c \)
6. \(\log |x + 1| + 3 \log |x - 3| + \frac{2}{(x + 1)} + c \)
7. \(\log \left| x^3 - x^2 + 5x - 5 \right| + c \)
8. \(c = \frac{\pi}{4}, f(x) = \log |x| + \frac{\pi}{4} \)

12th Std. Business Mathematics and Statistics
Exercise: 2.3

1. \(\frac{a^x + a^n x - x^{n+1}}{n+1} + c\)
2. \(\frac{1}{a^x \log a} - \frac{1}{b^y \log b} + c\)
3. \(e^x + e^{2x} + e^{3x} + c\)
4. \(\left(\frac{e^{2x} + e^{4x}}{2} + \frac{e^{-4x}}{4}\right) + c\)
5. \(\frac{e^{4x}}{4} + c\)
6. \(e^{(x+\frac{1}{x})} + c\)
7. \(-\frac{1}{\log x} + c\)
8. \(c = 1, f(x) = e^x + 1\)

Exercise: 2.4

1. \(2 \sin x + 3 \cos x + 4 \tan x + 5 \cot x + c\)
2. \(-\frac{3}{4} \cos x + \frac{1}{12} \cos 3x + c\)
3. \(\tan x + c\)
4. \(\tan x - \cot x + c\)
5. \(-[\sin x + \cos x] + c\)

Exercise: 2.5

1. \(-e^{-x}(x+1) + c\)
2. \(e^{3x}\left(\frac{x^3}{3} - \frac{x^2}{3} + \frac{2x}{9} - \frac{2}{27}\right) + c\)
3. \(x(\log x - 1) + c\)
4. \(\frac{x^2}{2}\left(\log x - \frac{1}{2}\right) + c\)
5. \(\frac{x^{n+1}}{n+1}\left(\log x - \frac{1}{n+1}\right) + c\)
6. \(e^{x^2}\left(x^4 - 2x^2 + 2\right) + c\)

Exercise: 2.6

1. \(\log|x^2 + 5x - 7| + c\)
2. \(\frac{1}{4}\log|x^4 + 1| + c\)
3. \(\frac{1}{2}\log|e^{2x} - 2| + c\)
4. \(\frac{1}{4}\log\left(\log x\right)^4 + c\)
5. \(2\sqrt{3x^2 + 7x - 1} + c\)
6. \(\frac{4}{3}\left(x^2 + x + 1\right)^{\frac{3}{2}} + c\)
7. \(\frac{1}{54}\left(1 + x^9\right)^6 + c\)
8. \(\frac{1}{e}\log|x^e + e^x| + c\)
9. \(\log|\log x| + c\)
10. \(\frac{1}{10}\log\left|x^2 - 2\right| + c\)
11. \(xe^x\left(\log(xe^x) - 1\right) + c\)
12. \(\log|x| - \frac{1}{2}\log|x^2 + 1| + c\)
13. \(\frac{e^x}{2x^2} + c\)
14. \(\frac{e^x}{(x+1)^2} + c\)
15. \(\frac{e^{3x}}{9x} + c\)

Exercise 2.7

1. \(\frac{1}{24}\log\left(\frac{3 + 4x}{3 - 4x}\right) + c\)
2. \(\frac{1}{10}\log\left(\frac{9 + x}{1 - x}\right) + c\)
3. \(\frac{1}{6\sqrt{2}}\log\left(\frac{\sqrt{2x - 3}}{\sqrt{2x + 3}}\right) + c\)
4. \(\frac{1}{3}\log\left(\frac{x - 2}{x + 1}\right) + c\)
5. \(\log\left(\frac{x + 1}{x + 2}\right) + c\)
6. \(\frac{1}{10}\log\left(\frac{x - 1}{x + 4}\right) + c\)
7. \(\frac{1}{6}\log\left(\frac{e^x - 3}{e^x + 3}\right) + c\)
8. \(\frac{1}{3}\log\left(3x + \sqrt{9x^2 - 7}\right) + c\)
9. \(\log\left(\frac{x + 3}{\sqrt{x^2 + 6x + 13}}\right) + c\)
10. \(\log\left(\frac{x - \frac{3}{2}}{\sqrt{x^2 - 3x + 2}}\right) + c\)

\(\text{Answers}\)
12. \(\frac{x + \frac{1}{2}}{2} \sqrt{1 + x + x^2} + \frac{3}{8} \log \left(x + \frac{1}{2} \right) + \sqrt{1 + x + x^2} + c \)

13. \(\frac{x}{2} \sqrt{x^2 - 2} - \log |x + \sqrt{x^2 - 2}| + c \)

14. \(\frac{1}{4} \left[2x \sqrt{4x^2 - 5} - 5 \log |2x + \sqrt{4x^2 - 5}| \right] + c \)

15. \(\frac{x + 1}{2} \sqrt{2x^2 + 4x + 1} - \frac{\sqrt{2}}{4} \log \sqrt{2(x + 1) + \sqrt{2x^2 + 4x + 1}} + c \)

16. \(\frac{x^2}{2} - \frac{x}{2} \sqrt{x^2 - 1} + \frac{1}{2} \log |x + \sqrt{x^2 - 1}| + c \)

Exercise 2.8

I: 1. \(\frac{1}{2} [e^2 - 1] \) 2. \(\frac{1}{6} \) 3. \(\frac{1}{2} \log \left(\frac{5}{2} \right) \) 4. \(\log \left(\frac{1 + e^3}{2} \right) \)

5. \(\frac{1}{2} [e - 1] \) 6. \(\frac{3}{8} \) 7. \(\log \left(\frac{11}{5} \right) \) 8. \(2 \) 9. \(\frac{1}{2} [2 \log 2 - 1] \)

II: 1. 37 2. 0 3. 1 4. \(c = 4 \)

Exercise 2.9

1. 0 2. \(\frac{\pi}{2} \) 3. 0 4. \(\frac{\pi}{4} \) 5. 0 6. \(\frac{16}{5} \)

Exercise 2.10

1. (i) 6 2. \(\frac{105 \sqrt{\pi}}{16} \) 3. \(\frac{6!}{m^2} \) 4. \(\frac{3}{128} \) 5. \(v \left(2^6 \right)^{5!} \) 6. \(\frac{1}{4} \)

Exercise 2.11

1. \(\frac{9}{2} \) 2. \(\frac{3}{2} \) 3. 14 4. \(\frac{1}{3} \)

Exercise 2.12

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(b)</td>
<td>(c)</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
<td>(b)</td>
<td>(a)</td>
<td>(d)</td>
<td>(c)</td>
<td>(b)</td>
<td>(b)</td>
<td>(b)</td>
<td>(b)</td>
<td>(c)</td>
</tr>
<tr>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(d)</td>
<td>(c)</td>
<td>(c)</td>
<td>(b)</td>
<td>(a)</td>
<td>(b)</td>
<td>(b)</td>
<td>(c)</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
<td>(d)</td>
<td>(b)</td>
<td>(c)</td>
</tr>
</tbody>
</table>

Miscellaneous problems

1. \(\frac{2}{15} \left(x + 2 \right)^{\frac{3}{2}} + (x + 3)^{\frac{3}{2}} + c \)

2. \(\frac{1}{5} \log \left| \frac{2 + x}{1 - 2x} \right| + c \)

3. \(\frac{1}{4} \log \left| \frac{e^x + 1}{e^x + 5} \right| + c \)

4. \(\frac{x}{2} \sqrt{2x^2 - 3} - \frac{3\sqrt{2}}{4} \log \sqrt{2x + \sqrt{2x^2 - 3}} + c \)
5. \(\frac{3x + 2}{6} \sqrt{9x^2 + 12x + 3} - \frac{1}{6} \log \left(3x + 2 \right) + \frac{\sqrt{9x^2 + 12x + 3}}{x} \) +c

6. \(\frac{1}{3} \left[(x + 1)^3 \log x - x^3 + \frac{x^2}{3} - 3x - \log |x| \right] + c \)

7. \(x \log \left(x - \sqrt{x^2 - 1} \right) + \sqrt{x^2 - 1} + c \)

8. \(0 \quad 9. \frac{1}{4} \left[\frac{e^4 - 5}{e^2} \right] \quad 10. \frac{14}{15} \)

3. Integral Calculus – II

Exercise 3.1

1. 5 sq.units 2. 2 sq.units 3. \(\frac{8a^2}{3} \) sq.units 4. \(\frac{3}{2} \) sq.units

5. \(\frac{17}{2} \) sq.units 6. \(\frac{8}{3} \) sq.units 7. \(\frac{32}{3} \) sq.units

Exercise 3.2

1. ₹28,000 2. \(y = \left(\frac{2x - 1}{3x + 2} \right) \) 3. \(P = 8 - 2x, R = 8x - 2x^2 \)

4. ₹4,419 5. ₹5,680

6. Total cost \(= 100x - 5x^2 + \frac{0.1x^3}{3} + 500 \), Average Cost \(= 100x - 5x + \frac{x^2}{30} + \frac{500}{x} \)

7. Total Cost \(= \frac{1500}{7} x^\frac{3}{2} \), Average Cost \(= \frac{1500}{7} x^\frac{1}{2} \)

8. Cost function \(C = 2\sqrt{ax + b} - 2\sqrt{b} \) 9. ₹14,133.33

10. Total Revenue=₹5.95 11. Demand function \(P = 9 - \frac{4x^2}{3} \)

13. Demand function \(P = 20e^{\frac{x}{10}} \) 14. Profit function \(= 13x - 0.065x^2 - 120 \)

15. Revenue function \(R = 1500x - 2x^2 - x^3 \), Average revenue function \(P = 1500 - 2x - x^2 \)

16. Revenue function \(R = 10x + \frac{3x^2}{2} - \frac{x^3}{3} \), Demand function \(P = 10 + \frac{3x^2}{2} - \frac{x^3}{3} \)

17. Total Cost \(C = 4000\sqrt{7x + 4} + 10000 \), Average Cost \(A.C = \frac{4000}{x} \sqrt{7x + 4} + \frac{10000}{x} \)

18. \(C = \frac{x^2}{4} + 5000 \) 19. Revenue function \(R = 20x - \frac{5x^2}{2} + x^3 \)

20. Demand function \(P = 14 - 3x + 3x^2 \)

Answers 203
Exercise 3.3
1. $cs = 400$ units
2. $C.S = 378$ units
3. $C.S = 562.50$ units
4. $C.S = \frac{1}{2} \left[1-\log_2 2 \right]$ units
5. $P.S = \frac{25}{2}$ units.
6. $P.S = 237.3$ units
7. $C.S = 36 \log_2 \frac{3}{2} - 12$ units
8. $= \frac{32000}{3}$ units
9. $C.S = (8 \log 2 - 4)$ units, $P.S = \frac{1}{4}$ units
10. $C.S = \frac{1024}{3}$ units, $P.S = 64$ units
11. $C.S = 24$ units, $P.S = 16$ units

Exercise 3.4

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(c)</td>
<td>(b)</td>
<td>(a)</td>
<td>(c)</td>
<td>(a)</td>
<td>(d)</td>
<td>(c)</td>
<td>(b)</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(c)</td>
<td>(c)</td>
<td>(b)</td>
<td>(a)</td>
<td>(b)</td>
<td>(a)</td>
<td>(c)</td>
<td>(a)</td>
<td>(c)</td>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
<td></td>
</tr>
</tbody>
</table>

Miscellaneous problems
1. $\₹ 1,900$
2. $C = \₹ 3,125$
4. $R = 6x - x^3 - \frac{x^4}{4}$, $p = 6 - x^2 - \frac{x^3}{4}$
5. Profit function is $10x - \frac{x^2}{40} - 100$.
6. $C.S = \frac{40}{9}$ units, $P.S = \frac{32}{9}$ units.
7. $52,770$ units
8. $P = 11 - \frac{x^3}{3}$
9. $\frac{76}{3}$ sq.units
10. $\frac{1}{5} \left(\frac{2}{3} - 1 \right)$ sq.units

4. Differential Equations

Exercise 4.1
1.(i) $(1, 1)$ (ii) $(3, 1)$ (iii) $(2, 2)$ (iv) $(3, 1)$
(v) $(3, 3)$ (vi) $(2, 1)$ (vii) $(1, 4)$.
2.(i) $y = x \frac{dy}{dx} + \frac{dy}{dx} = \left(\frac{dy}{dx} \right)^2$
(ii) $\left(\frac{dy}{dx} \right)^3 - 4xy \frac{dy}{dx} + 8y^2 = 0$
(iii) $y + x \frac{dy}{dx} = 0$
(iv) $x + y \frac{dy}{dx} = 0$
3. $r^2 \left(\frac{d^2 y}{dx^2} \right)^2 = \left[1 + \left(\frac{dy}{dx} \right)^2 \right]^3$
4. $y = x \frac{dy}{dx}$
5. $2a \frac{d^2 y}{dx^2} \left(\frac{dy}{dx} \right)^3 = 0$
6. $y^2 = x^2 + 2xy \frac{dy}{dx}$
7. $y = 2x \frac{dy}{dx} + y \left(\frac{dy}{dx} \right)^2$

Exercise 4.2
1.(i) $e^{-y} + ax + C = 0$
(ii) $\log x + \frac{x^2}{2} = \frac{y^2}{2} + \frac{y^3}{3} + C$
2. $\log x - x = \log y + C$
3.(i) $x = Cy$
(ii) $\log(1 + y) = -e^x + C$
4. $(1 + \sin x) = C(1 + \cos y)$
5. \((x - 1)(y + 1) = C\)
6. (i) \(\log y = -\frac{\cos 2x}{2} + C\)
(ii) \(\frac{e^{ax}}{a} = -\frac{e^{by}}{b} + C\)
7. \((y - b)^2 = (x - a)^2 + b^2 - a^2\)

Exercise 4.3

1. \(x = Ce^x\)
2. \(x + y = Ke^{xy}\)
3. \(y + \sqrt{x^2 + y^2} = x^2C\)
4. \(3y^2 - 4yx + 3x^2 = x^3C\)
5. \((xy - y^2)x = C\)
6. \(y\sqrt{y^2 - x^2} = 2\sqrt{3}x^5\)
7. \(y = ce^{2y^2}\)

Exercise 4.4

1. \(\frac{y}{x} = x + C\)
2. \(ye^{\sin x} = e^{\sin x}(\sin x - 1) + C\)
3. \(x^2 y = \frac{x^6}{6} + C\)
4. \(y(1 + x^3) = x + \frac{x^3}{3} + C\)
5. \(xy = e^x\left(x^2 - 2x + 2\right) + C\)
6. \(y\sec x = \frac{1}{2}\left(x + \frac{\sin 2x}{2}\right) + C\)
7. \(y\sec^2 x = \sec x - 2\)
8. \(x^2e^x - 2xe^x + 2e^x + c\)
9. \(\text{Rs} 2,22,550\)

Exercise 4.5

1. \(y = Ae^{2x} + Be^{4x}\)
2. \(y = (Ax + B)e^{2x}\)
3. \(y = e^{-x}(A\cos\sqrt{2}x + B\sin\sqrt{2}x)\)
4. \(y = (Ax + B)e^{kx}\)
5. \(y = \frac{e^{-3x}}{12} + \frac{e^{5x}}{20}\)
6. \(y = Ae^{2x} + Be^{2x} + \frac{e^{2x}}{4}\)
7. \(y = A\cos 4x + B\sin 4x\)
8. \(y = 3e^x - \frac{7}{2}e^{2x} + \frac{e^{3x}}{2}\)
9. \(y = Ae^{-3x} + Be^{2x} + \frac{e^{3x}}{6} - \frac{x}{5}e^{-3x}\)
10. \(y = (Ax + B)e^{5x} + 2xe^{5x} + \frac{1}{5}\)
11. \(y = Ae^{-\frac{3x}{2}} + Be^{2x} + 4xe^{\frac{3x}{2}}\)
12. \(y = Ae^{2x} + Be^{\frac{3x}{2}} + xe^{2x}\)
13. \(P = Ae^{-4t} + Be^{2t} + 2\)

Exercise 4.6

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>(d)</td>
<td>(a)</td>
<td>(b)</td>
<td>(a)</td>
<td>(a)</td>
<td>(d)</td>
<td>(c)</td>
<td>(a)</td>
<td>(c)</td>
<td>(b)</td>
<td>(a)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(c)</td>
<td>(d)</td>
<td>(a)</td>
<td>(d)</td>
<td>(a)</td>
<td>(b)</td>
<td>(d)</td>
<td>(a)</td>
<td>(d)</td>
<td>(c)</td>
<td>(a)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Miscellaneous Problems

1. \(p = Ae^{-4t} + Be^{2t} + 3\)
2. \(x^2 \frac{d^2y}{dx^2} - 2x \frac{dy}{dx} + 2y = 0\)
3. \(e^x(x^2 - 2x + 2) + \log y = c\)
4. \(x\left(1 + \frac{3y^2}{x^2}\right)^\frac{1}{3} = c\)
5. \(yx^2 = \frac{x^6}{6} + c\)
6. \(cm^2 = 2(m+6)\)
7. \(6y = (e^2 + e)e^x - (e^2 + e + 1)e^{2x} + e^{4x}\)
8. \(ye^{\sin x} = 2e^{\sin x} + c\)

9. \(\log y = \frac{x^3}{3y^2} + c\)
10. \(\log |y| = x + \frac{x^2}{2} + c\)

5. Numerical Methods

Exercise 5.1

1. \(\log \left(1 + \frac{h}{ax}\right)\)

2.

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
<th>(\Delta y)</th>
<th>(\Delta^2 y)</th>
<th>(\Delta^3 y)</th>
<th>(\Delta^4 y)</th>
<th>(\Delta^5 y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>10</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>16</td>
<td>0</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>51</td>
<td>32</td>
<td>0</td>
<td>6</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>104</td>
<td>53</td>
<td>0</td>
<td>6</td>
<td>31</td>
<td>15</td>
</tr>
</tbody>
</table>

5. \(-\frac{2}{(x+1)(x+2)(x+3)}\)
6. 31
7. 445 lakhs
8. 3 and 24

Exercise 5.2

1. 6.8
2. \(¥2,900\)
3. \(f(x) = 2x^3 - 7x^2 + 6x + 1\)

4. 36.784 (lakhs)
5. 197
6. 15.45

7. 286.96
8. 22.0948
9. 100 (Thousand tones)

10. 42persons
11. 444.7Lakhs
12. 53

Exercise 5.3

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>(c)</td>
<td>(a)</td>
<td>(c)</td>
<td>(d)</td>
<td>(a)</td>
<td>(c)</td>
<td>(c)</td>
<td>(c)</td>
<td>(c)</td>
<td>(a)</td>
<td>(c)</td>
<td>(b)</td>
<td>(b)</td>
</tr>
</tbody>
</table>

Miscellaneous Problems

3. \(f(x) = x^2 - 3x + 1\)
4. 14.25, 23.5
5. 128.5

6. 189.79, 286.96
7. 5281, 6504

9. \(y = \frac{2}{3}x^4 - 8x^3 + \frac{100}{3}x^2 - 56x + 31\)
10. \(y = x^3 - 8x^2 + 19x - 12\)
<table>
<thead>
<tr>
<th>Books for Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction to Matrices, S.P.Gupta, S.Chand & Company</td>
</tr>
<tr>
<td>2. Matrices, Shanthi Narayanan, S.Chand & Company</td>
</tr>
<tr>
<td>3. Matrices and Determinants, P.N.Arora, S.Chand & Company</td>
</tr>
<tr>
<td>4. Stochastic Processes, J. Medhi, New age international publishers</td>
</tr>
<tr>
<td>14. Finite differences and numerical analysis - H.C.Saxena, S.Chand & Company</td>
</tr>
<tr>
<td>15. Applied statistics by A. Chandrasekaran and A. Latha</td>
</tr>
<tr>
<td>18. Comprehensive Statistical Methods : P.N. Arora, Sumeet Arora and S. Arora</td>
</tr>
<tr>
<td>24. Handbook of basic c statistical concepts for scientists and pharmacists by Shubha Rani</td>
</tr>
<tr>
<td>33. Operations Research, Dr.S.P.Gupta, P.K. Gupta, Dr.Manmohan, Sultan Chand & Sons</td>
</tr>
<tr>
<td>38. Mathematics, HSC First & Second Year, Tamilnadu Text Book Corporation.</td>
</tr>
</tbody>
</table>
Business Mathematics and Statistics - Higher Secondary Second Year
Text Book Development Team

Domain Expert
- Mr. N. RAMESH, Associate Professor (Retd), Department of Mathematics, Government Arts College(Men), Nandanam, Chennai-600 035

Reviewers
- Dr. M. R. Sreenivasan, Professor & HOD, Department of Statistics, University of Madras, Chennai-600 005.
- Dr. D. Arivudainambi, Professor in Mathematics, Anna University, Chennai-600 025

Content Experts
- Dr. VENU PRAKASH, Associate Professor & HOD, Department of Statistics, Presidency College, Chennai-600 005.
- Dr. R. THIRUMALAI, Associate Professor & HOD, Department of Mathematics, Government Arts College(Men), Nandanam, Chennai-600 035
- Dr. S. J. VENKATESAN, Associate Professor, Department of Mathematics, Government Arts College(Men), Nandanam, Chennai-600 035
- Mrs. K. GOKILA, Assistant Professor & HOD, Dr. Ambedkar Government Arts College, Vyasarpadi, Chennai
- Dr. N. SUNDARAM, Assistant Professor, Department of Statistics, Presidency College, Chennai-600 005.
- Dr. L. PARIDAYAL, Assistant Professor, Department of Statistics, MCC, Tambaram, Chennai
- Mrs. M. THILAGAM, Assistant Professor, Department of Statistics, Presidency College, Chennai-600 005.

Authors
- Mr. R. VILLAVANKOTHAI, Head Master, GHSS, Korukkai, Nagapattinam District.
- Mr. T. P. SWAMINATHAN, Post Graduate Teacher, MMA Govt. Hr. Sec. School, Pallavaram, Chennai-43
- Mr. H. VENKATESH, Post Graduate Teacher, Sir Ramaswami Mudaliar Hr. Sec. School, Ambattur, Chennai 600 053.
- Mrs. C. BAGAVATHY, Post Graduate Teacher, Ahobilam Math Oriental HSS., West Mambalam, Chennai - 600 033.
- Mr. V. KALAI SELVAN, Post Graduate Teacher, GHSS, Tiruninravur, Thiruvallur Dist.
- Mr. S. F. SULAIMAN, Post Graduate Teacher, MMA Govt. Hr. Sec. School, Pallavaram, Chennai-43
- Mr. T. RAJA SEKHAR, Post Graduate Teacher, Govt. Boys Hr. Sec. School, Chrompet, Chennai-44
- Mrs. A. SUGANYA, Post Graduate Teacher, GHSS, Kovilambakkam, Kancheepuram District
- Mr. V. GANESAN, Post Graduate Teacher, Govt. Boys Hr. Sec. School, Nanganallur, Chennai-114
- Mr. M. K. THRILOGACHANDRAN, Post Graduate Teacher, GHSS, Meyyur, Thiruvallur Dist.

ICT Co-ordinator
- Mr. D. VASURAJ, PGT - Maths Teacher & HOD, KRM Public School, Chennai- 600 011

QR Management Team
- S. Albert Valavan Babu, B.T Asst., G.h.s, Perumal Kovil, Paramakudi, Ramanathapuram.

Layout Designer
- JOY GRAPHICS, Chindattripet, Chennai-600 002.

In House QC
- T. Rajesh
- C. Jerald Wilson
- P. Prasanth
- P. Arun Kamaraj

Typing
- K. Nagavelu.

This book has been printed on 80 GSM Elegant Maplitho paper
Printed by offset at: